llecnicasydell/AfparalBiclogia

2 - Training Neural Networks

André Lamurias

rainingfNedral

Summary
m Algebra (quick revision)

m The computational graph and AutoDiff
m Training with Stochastic Gradient Descent

m Introduction to the Keras Sequential API

li2iningiNeuralfNetwenks

Algebra

Algebra

Basic concepts:
m |Scalar|: A number

m |Vector| An ordered array of numbers

m |Matrix|: A 2D array of numbers

m |Tensor|. A relation between sets of algebraic objects

* (numbers, vectors, etc.)

* For our purposes: an N-dimensional array of numbers

m We will be using tensors in our models (hence Tensorflow)

Algebra

Tensor operations
m Adition and subtraction:

* In algebra, we can add or subtract tensors with the same dimensions

e The operation is done element by element

(a @2 ... g \ (bin b ... by \ antbin dptbe 4. dg+byg
az1 azo . Q2q boy boo . b2q an +ba1 axp+by ...+... axg+by

+ L + +
\ ap1r Ap2 Apq J \ bpr bp2 bpq J api+bpr ap+bp ...+... apg+bpg

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

ai

az

a2

azz

11

C21

by

boo

C12

C22

sz

blq

b2q

Clq

C2q

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

ai a2 g 11 C12

azi ao e a2q C21 C22

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

all ayo alq C11 C12 Clq
az azz a2q C21 C22 cee C2qg
ap1 Aap2 Apq Cp1 Cp2 Cpq

Algebra

Tensor operations
m Matrix multiplication (2D)

b1y b

ba1 ba
* Follows algebra rules:

C=AB

A columns same as B rows

11 C12

C21 C22

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

by

boo

C12

C22

sz

blq

b2q

Clq

C2q

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

C21

C22

sz

C2q

10

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

11

C21

by

boo

C12

C22

sz

blq

b2q

Clq

C2q

11

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

blq

b2q

Clq

C2q

12

Algebra

Tensor operations
m Matrix multiplication (2D)

* Follows algebra rules:
C=AB

A columns same as B rows

13

Algebra

m Neuron: linear combination of inputs with non-linear activation

weights

inputs

X7
activation
functon
X @ net |r‘;|:}ut
net.
— @ —9
x @ activation
3 - =
transfer
' function
. 0
threshold

14

Algebra

Tensor operations
m Tensorflow also allows broadcasting like numpy

* Element-wise operations aligned by the last dimensions

(an ar . arg \ b1 bis o blq ain+biy app+bi ...+... aig+by
an1 (250} cen azq ax1+b1y dpptbiz ...t+... apqg+biyg
‘+ by +bp et itbyg
k ap1 dp2 @pq ap +bn ap+biz ...+... apgt+big
)

15

Algebra

Tensor operations
m Tensorflow also allows broadcasting like numpy

* Element-wise operations aligned by the last dimensions

m tf.matmul () also works on 3D tensors, in batch

e Can be used to compute the product of a batch of 2D matrices

e Example (from Tensorflow matmul documentation):

In : a

array ([[[94,
[229,

[[508,
[697,

= tf.constant(np.arange(l, 13, dtype=np.int32), shape=[2, 2, 3])
In : b = tf.constant (np.arange (13, 25, dtype=np.int32), shape=[2, 3, 2])
In : ¢ = tf.matmul(a, b) # or a * b

Out: <tf.Tensor: id=676487, shape=(2, 2, 2), dtype=int32, numpy=

100],
244]],

5321,
730111, dtype=int32)>

16

Algebra

Why is this important?

m Our models will be based on this type of operations

m Example batches will be tensors (2D or more)

m Network layers can be matrices of weights (several neurons)

m Loss functions will operate and aggregate on activations and data

In practice mostly hidden
m When we use the keras APl we don't need to worry about this

m But it's important to understand how things work

m And necessary to work with basic Tensorflow operations

17

alningiNeuralfNetWweorks

Basic Example

18

BasiciExample

m Classify these data with two weights, sigmoid activation

input layer output layer

—

@\

6_

4_

2 -

o
o
°% o
o © o %o
o
o © %o ooo
o ° o° o
°° o (o) (o]
o o o (o] o
o o o o o
®o0o ©
o © o
o ® o
o o o
o o o
(o] omo °O
o o © o
00 o oo
o o o
o
Oe o
0 o0
o
o
-8 -6 -4 =2 0 2 4

19

BasiciExample

Computing activation

m |Input is a matrix with data, two columns for the features, N rows

2
= To compute) | w;z; use matrix multiplication

X11

X21

Xn1

X12

X22

Xn2

j=1

wi

wy

X11

X21

X31

wq

251

wi

un

w1

X12

X22

X32

Wy

w3

wa

wa

wo

20

BasiclExample

Computing activation

m |Input is a matrix with data, two columns for the features, N rows

2
= To compute) | w;z; use matrix multiplication
j=1

m For each example with 2 features we get one weighted sum
m Then apply sigmoid function, one activation value per example

m Thus, we get activations for a batch of examples

21

alningiNeuralfNetWweorks

Training (Backpropagation)

22

iraining

Backpropagation
m For weight m on hidden layer 7, propagate error backwards

e Gradient of error w.r.t. weight of output neuron:
5E,gn 5sfm 5netfm

0s’ Snet’ OWmin
kn kn

m Chain derivatives through the network:

Au}] o Z 5El§p 58{? 5netip 58.1777, 5netzn
min n p 58{3}) 5neti:p 5sgn 5net{n OWinin

m (See more in lecture notes)

23

iraining

Backpropagation Algorithm
m Propagate the input forward through all layers
e Compute activations

m For output neurons compute

e |Loss function
e Derivatives of loss function

m Backpropagate derivatives of loss function to back layers
m Update weights using the computed derivatives

This can be generalized
m Different architectures

m Different activation functions

m Different loss functions, regularization, etc

24

iraining

Computing derivatives
m Symbolic differentiation:

e Compute the expression for the derivatives given the function.

* Difficult, especially with flow control (if, for)

m Numerical differentiation:

e Use finite steps to compute deltas and approximate derivatives.

e Computationally inefficient and prone to convergence problems.

m Automatic differentiation:

e Apply the chain rule to basic operations that compose complex functions
e product, sum, sine, cosine, etc

e Applicable in general provided we know the derivative of each basic operation
25

m Automatic differentiation example:

: dcosx ,
argmin (cos x) ———— = —sinx
x dx

4 "

-
gradients

26

m Automatic differentiation example:

, dcosz
argmin (cos x)

T dx

Fd

Cos_grad

mul

Neg Sin

= —SsInx

27

m Automatic differentiation example:

argmin (z° cosz + sin z)
xr
pow_y_R...
(" YO .
gradients
gradients :::'_::j—g:a(dmjmsm AddN

gradients_c... =~

m Tensorflow operators include gradient information

Stochastic Gradient Descent
m Going back to our simple model:

output layer

/'/\

O
@/

input layer

6_.

4_.

o
o
°%,
o ©O
o o
o ©O %o °°°
o o o o
o, ° ©
®@o0 ©
o o o
o ® o
o o o
o o o
(o] omooo
o o © o
%08 o ©9o
o o o
o
oe °
0 o0
o
o
-8 -6 -4 -2 0 2 4

29

Stochastic Gradient Descent

m Since we can compute the derivatives, we can "slide" down the loss
function

input layer output layer

30

Stochastic Gradient Descent

Gradient Descent| because of sliding down the gradient

Stochastic

because we are presenting a random minibatch of

examples at a time

31

raining

Stochastic Gradient Descent
m |Gradient Descent| because of sliding down the gradient

m |Stochastic| because we are presenting a random minibatch of
examples at a time

Algorithm:
= Estimate the gradient of L (f (x, 6) , y) given m examples:

o (2 Sl)
1=1

m Update 6 with a learning rate ¢
01 = 0, — €g,

32

SGD can be improved with momentum

m If we are rolling down the
surface we could pick up
speed

m Use gradients as an "acceleration”, with
1 & Z. z,
o (5 509

01 = 0; + €very

33

(©))
=
=

(©

=
T

SGD can be improved with momentum

m SGD + 0.9 momentum

m SGD

34

iraining

Minibatch size

m Averaging over a set of examples gives a (slightly) better estimate
of the gradient, improving convergence

* (Note that the true gradient is for the mean loss over all points)

m The main advantage of batches is in using multicore hardware
(GPU, for example)

e This is also the reason for power of 2 minibatch sizes (8, 16, 32, ...)

m Smaller minibatches improve generalization because of the random
error

e The best for this is a minibatch of 1, but this takes much longer to train

m In practice, minibatch size will probably be limited by RAM.

35

(©))
=
=

(©

=
T

m Minibatch of 1

= Minibatch of 10

m Note: the actual time is much longer for minibatch of 1

36

alningiNeuralfNetweorks

Improving the model

37

BENEF WEES

Our simple (pseudo) neuron lacks a bias

2
Y = w;T; + bias
7=1
input layer output layer
: = =
input layer output layer

/'/\ //\

@\‘ z ,
=

P

&)

%

38

Our simple (pseudo) neuron lacks a bias
m This means that it is stuck a (0,0)

m No bias input = With bias input

39

BENEF WEES

And one neuron cannot properly separate these sets

m We need a better model:

- . 1.0 3
input layer hidden layer output layer o
A A I o 00°%¢g 8 %
0.8
Soo © o929]
2B ® o &
064 0 o ©)
o° ©
o
0.4 o & 1 e é
‘ o ® o 00
o ° o °7 070 4 %
o %50 Qo © °
0.2 o ol oA o ©© o
09 oo % G0 o o o
0.0 o © °
00 02 04 06 08 1) ° q,% °
1 o
o .o
0.3 % e
p 000
-2 o
o
_3 T T T
0.2 1 -3 -2 -1 0 3
0.1
0.0
2500 5000 7500 10000 12500 15000 17500

20000

40

BENEF WEES

Neural Networks stack nonlinear transformations

input layer

—

hidden layer
A

I R T 4

hidden layer
/./‘\

output layer

—

41

alningiNeuralfNetweorks

Other Details

42

@thedetails

Initialization
m Weights: random values close to zero (Gaussian or uniform p.d)

* Need to break symmetry between neurons (but bias can start the same)

* Some activations (e.g. sigmoid) saturate rapidly away from zero

m (There are other, more sophisticated methods)

43

@tihegbetails

Convergence

m Since weight initialization and order of examples is random, expect
different runs to converge at different epochs

000000000000000

44

@thedetails

Convergence

z—p(X)
o(X)

m Standardize the inputs: T,,0, =

* |t is best to avoid different features weighing differentely
 |tis also best to avoid very large or very small values due to numerical problems

e Shifting the mean of the inputs to 0 and scaling the different dimensions also
improves the loss function "landscape”

45

DEES

Training schedules
m Epoch: one full pass through the training data

m Mini-batch: one batch with part of the training data

Generally needs many epochs to train

m (the greater the data set, the fewer the epochs, other things being
equal)

46

@tihegbetails

Shuffle the data in each epoch
m Otherwise some patterns will repeat

47

@thedetails

Take care with the learning rate
m Too small and training takes too long

m Butifitis too large convergence is poor at the end

48

ainingiNeuralfNetWweorks

Tutorial: Keras Sequential API

49

NEES SECUENIE

Building a model with Keras

import numpy as np

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from t0l_aux import plot model #auxiliary plotting function

m Create a Sequential model and add layers

model = Sequential ()
model.add (Dense (4, activation = 'sigmoid',6 input shape=(inputs,)))

m In this tutorial, inputs is 2 for the 2D dataset, but it can vary

model.add (Dense (4, activation = 'sigmoid'))
model.add (Dense (1, activation = 'sigmoid'))

m Only the first layer of a dense network needs the input size

50

m Compile and check the model

opt = SGD (1lr=INIT LR, momentum=0.9)
model.compile (loss="mse", optimizer=opt, metrics=["mse"])
model. summary ()

Layer (type) Output Shape Param #
dense (Dense) (None, 4) 12
dense 01 (Dense) (None, 4) 20
dense 02 (Dense) (None, 1) 5

Total params: 37

Trainable params: 37
Non-trainable params: 0

51

NEES SECUENIE

= Now we can train the model and obtain the history of training.

m We can also plot the loss function and how the model classifies:

H = model.fit(X, Y, batch size=16, epochs=10000)
plt.plot(H.history[' 'loss'])
plot _model (model, X, Y)

3
0.25 -
°
2 .
°®
0.20 - o o '0..
° O w o
1 0. " . %o . ° °® oo
0.15 - . ° % e % ° %
0 o o : [)
@
010 o. ° . ° .
°) 4
-1 ° .':.{ ° .o. °
) o °
0.05 1 ® o°
-2 o
°
0.00
0 2000 4000 6000 8000 10000 -3 -2 -1 0 1 2

52

li2iningiNeuralfNetwenks

Summary

53

irainingfNelraliNetWe ks

Summary
m Matrix algebra

m Automatic Differentiation
m Layers and nonlinear transformations

m Training multilayer feedforward neural networks

 MLP is a special case, fully connected
Further reading:
m Goodfellow, chapters 2 (algebra), 4 (calculus) and 8 (optimization)

m Andrej Karpathy's Intro to NNs and backprop:
https://www.youtube.com/watch?v=VMj-3S1tku0

54

