Técnicas de lA para Biologia

3 - Activation, Loss and Optimization

André Lamúrias

Introduction

Summary

- The vanishing gradients problem
- ReLU to the rescue
- Different activations: when and how
- Loss functions
- Optimizers
- Overfitting and model selection
- Regularization methods in ANN

Activation, Loss and Optimization

Vanishing gradients

Backpropagation in Activation and Loss

Output neuron n of layer k receives input from m from layer i through weight j

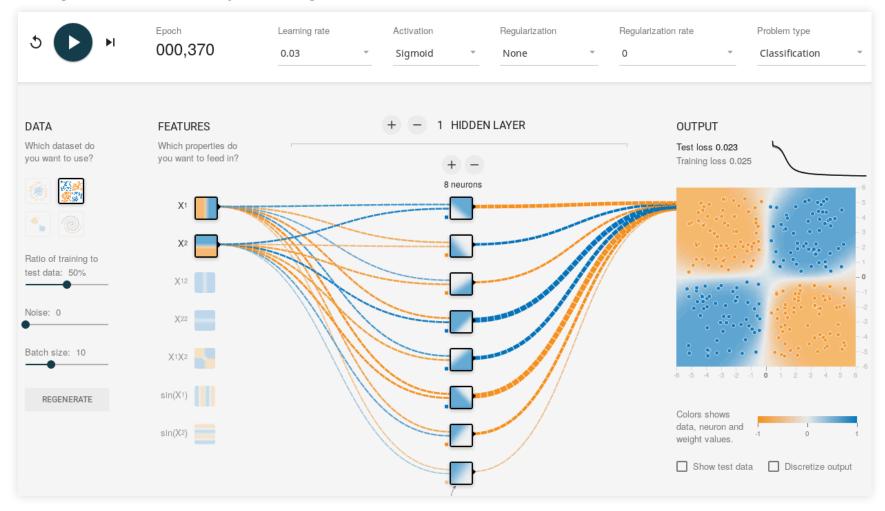
$$\Delta w^j_{mkn} \hspace{.1in} = \hspace{.1in} -\eta rac{\delta E^j_{kn}}{\delta s^j_{kn}} rac{\delta s^j_{kn}}{\delta net^j_{kn}} rac{\delta net^j_{kn}}{\delta w_{mkn}} \hspace{.1in} = \hspace{.1in} \eta (t^j - s^j_{kn}) s^j_{kn} (1 - s^j_{kn}) s^j_{im} = \eta \delta_{kn} s^j_{im}$$

For a weight m on hidden layer i, we must propagate the output error backwards from all neurons ahead

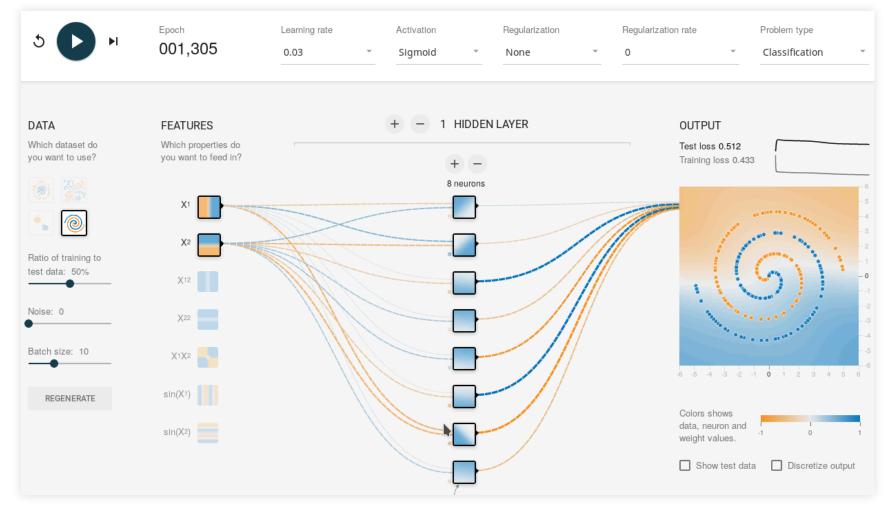
$$\Delta w^{j}_{min} = -\eta \left(\sum_{p} rac{\delta E^{j}_{kp}}{\delta s^{j}_{kp}} rac{\delta s^{j}_{kp}}{\delta net^{j}_{kp}} rac{\delta net^{j}_{kp}}{\delta s^{j}_{in}}
ight) rac{\delta s^{j}_{in}}{\delta net^{j}_{in}} rac{\delta net^{j}_{in}}{\delta w_{min}}$$

- If δs is small (vanishing gradient) backpropagation becomes ineffective as we increase depth
- This happens with sigmoid activation (or similar, such as TanH)

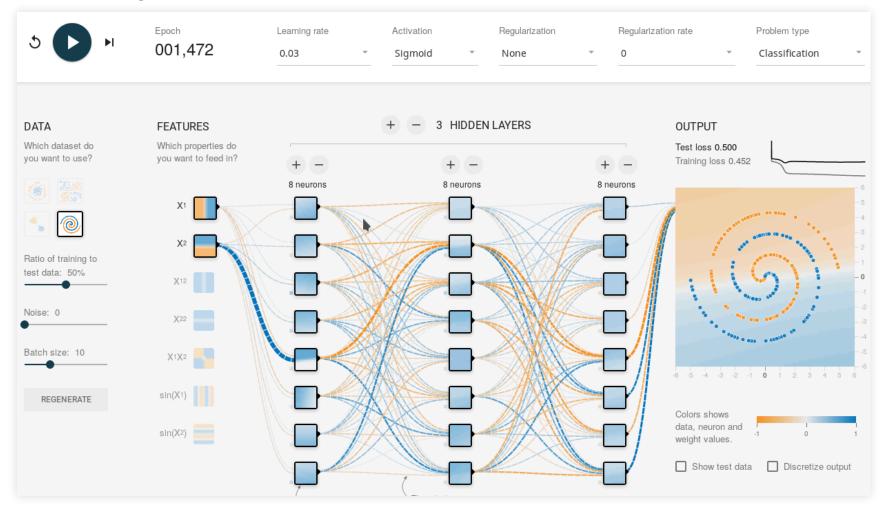
Single hidden layer, sigmoid, works fine here



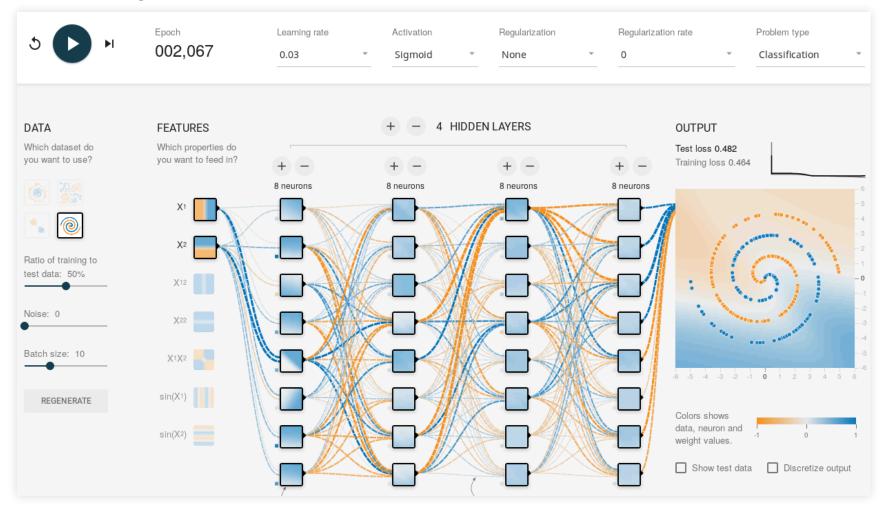
Single hidden layer, sigmoid, doesn't work here with 8 neurons



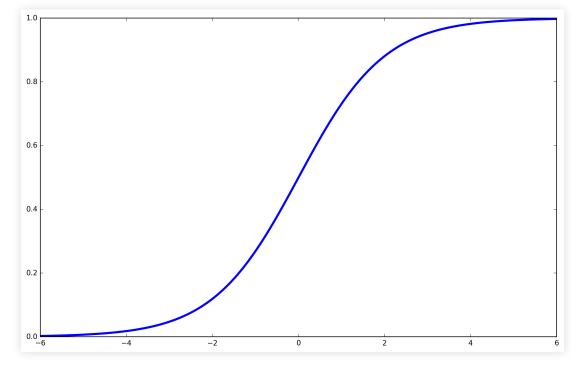
Increasing depth does not seem to help



Increasing depth does not seem to help



- Increasing depth does not seem to help
- Sigmoid activation saturates and gradients vanish with large coefs.

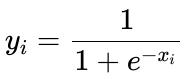


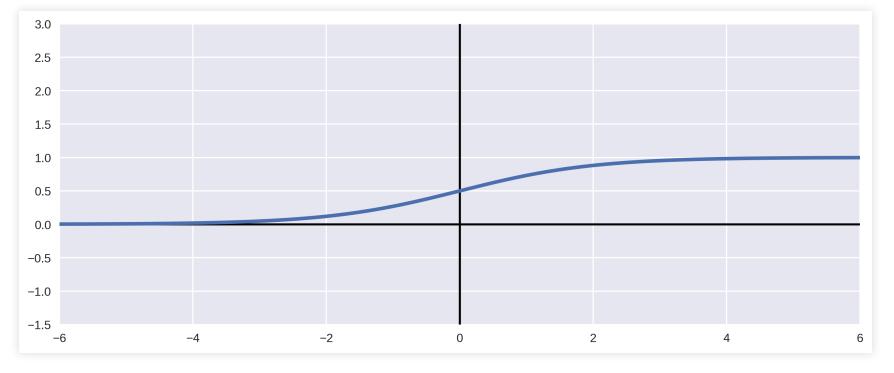
Activation, Loss and Optimization

Rectified Linear Unit

Rectified Linear Unit (ReLU)

 Sigmoid activation units saturate

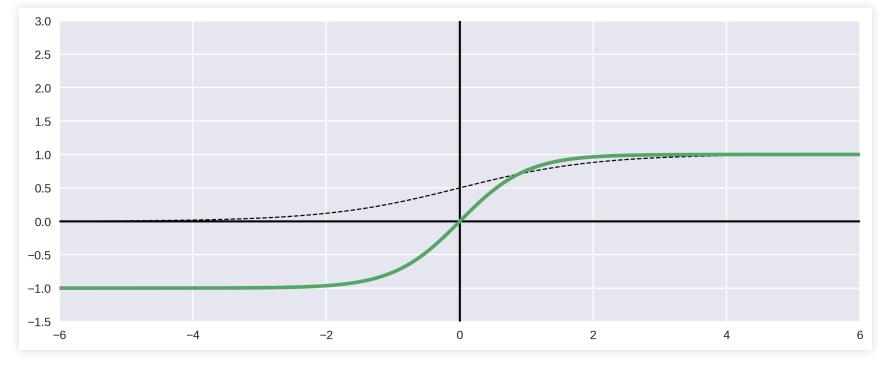




Rectified Linear Unit (ReLU)

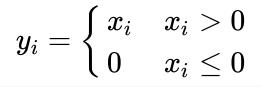
The same happens with hyperbolic tangent

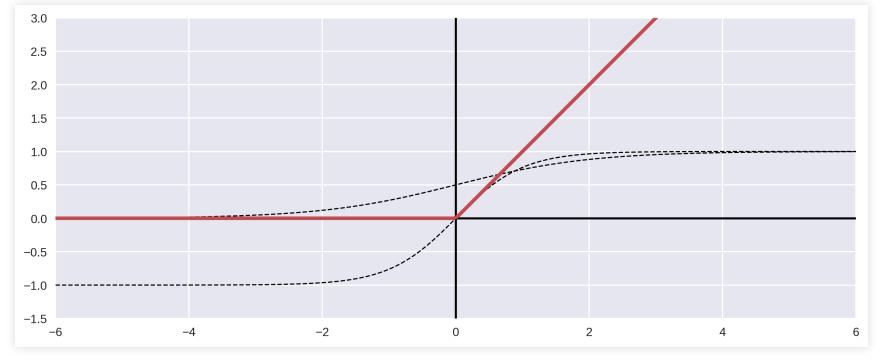
$$y_i=rac{e^x-e^{-x}}{e^x+e^{-x}}$$



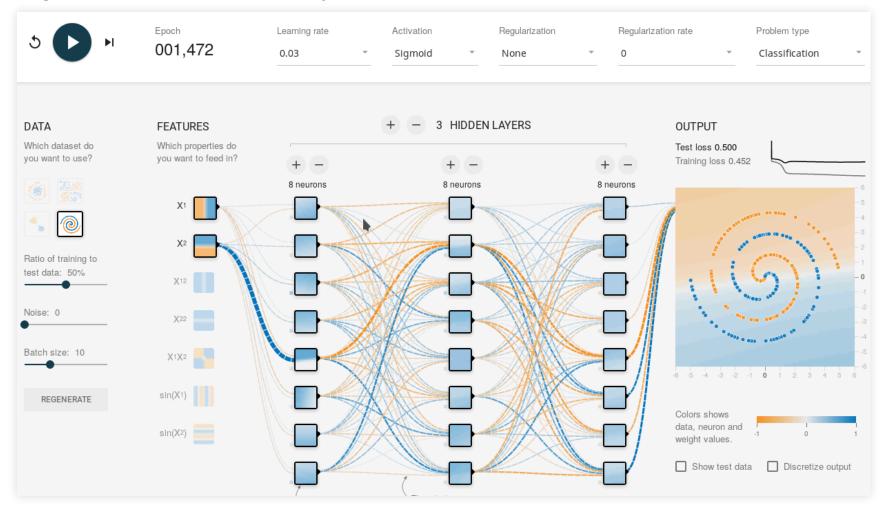
Rectified Linear Unit (ReLU)

 Rectified linear units do not have this problem

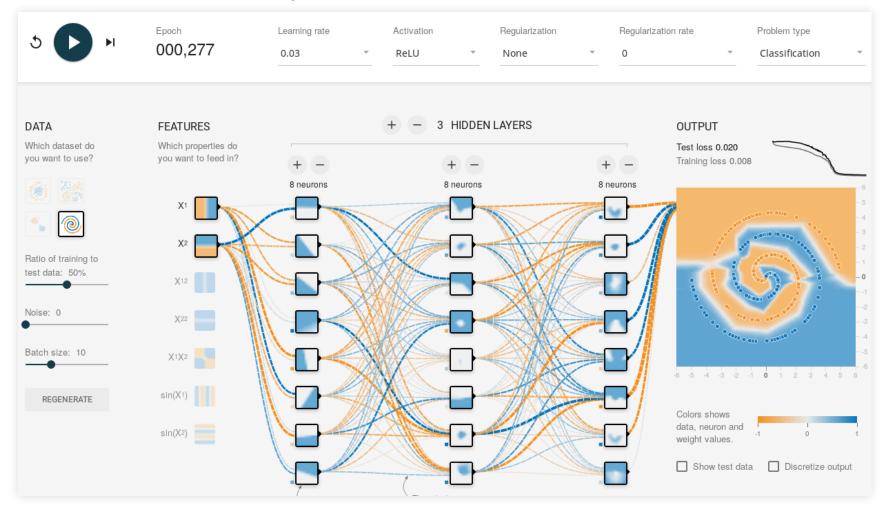




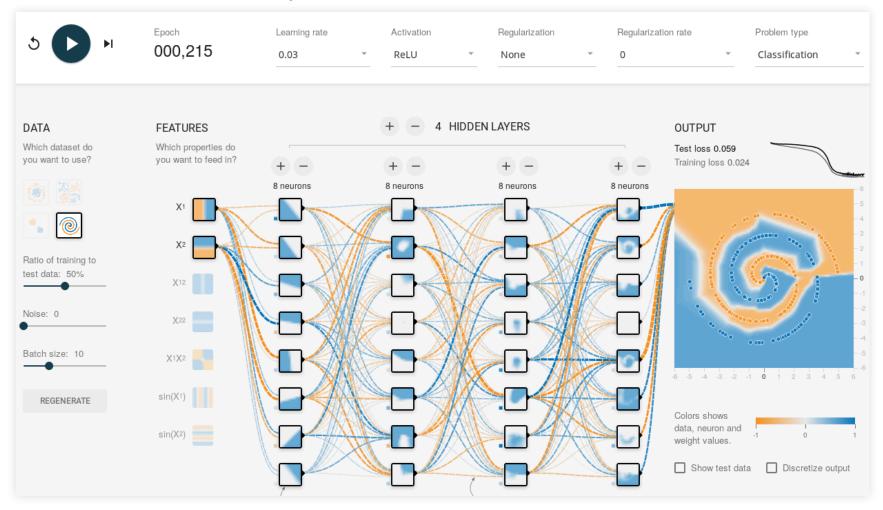
Sigmoid activation, 3 layers



ReLU activation, 3 layers



ReLU activation, 4 layers



ReLU

Rectified Linear Unit (ReLU)

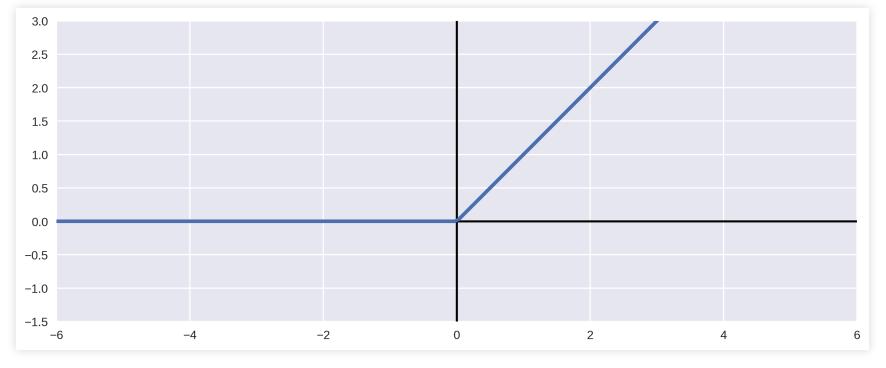
- Advantages of ReLU activation:
- Fast to compute
- Does not saturate for positive values, and gradient is always 1
- Disadvantage:
- ReLU units can "die" if training makes their weights very negative
- The unit will output 0 and the gradient will become 0, so it will not "revive"
- There are variants that try to fix this problem

ReLU

(Some) ReLU variants

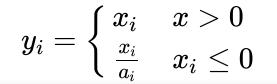
 Simple ReLU can die if coefficients are negative

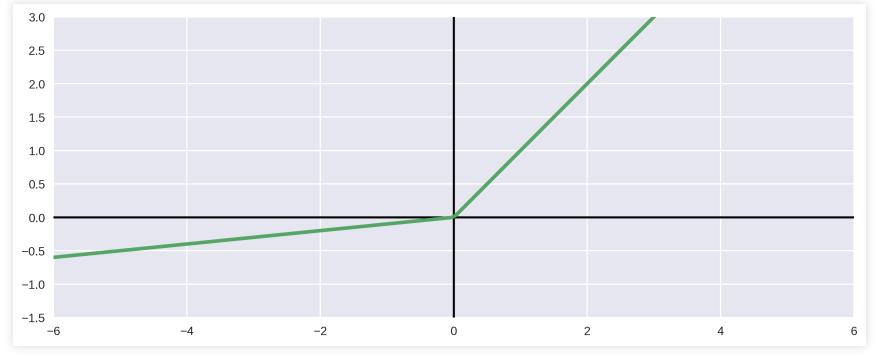
$$y_i = egin{cases} x_i & x_i > 0 \ 0 & x_i \leq 0 \end{cases}$$



ReLU variant: Leaky ReLU

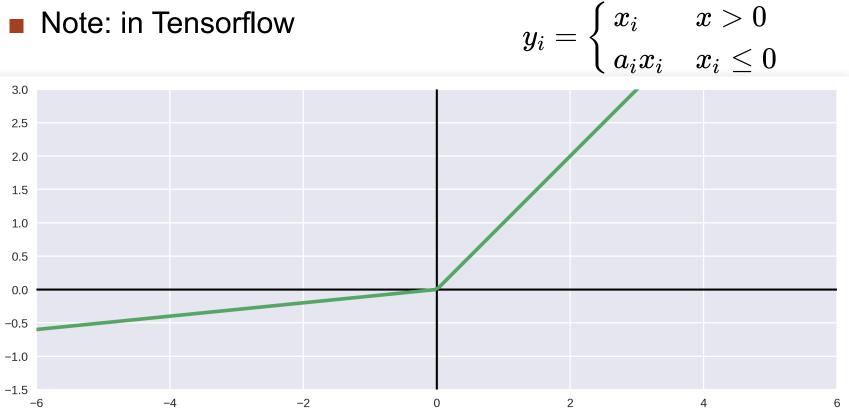
Leaky ReLU gradient is never 0





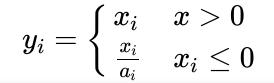
ReLU variant: Leaky ReLU

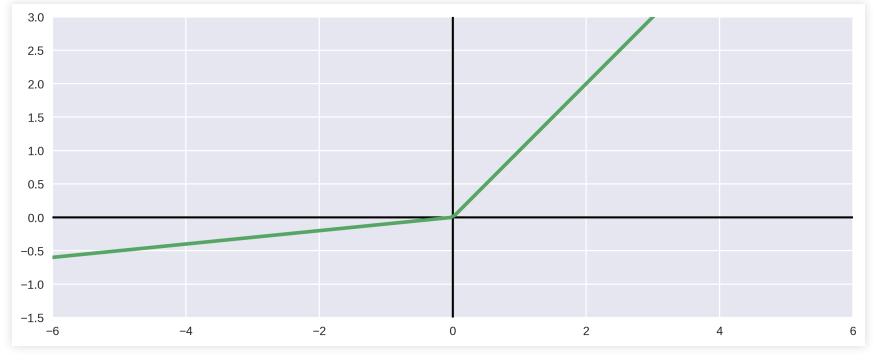
Note: in Tensorflow



ReLU variant: Parametric ReLU

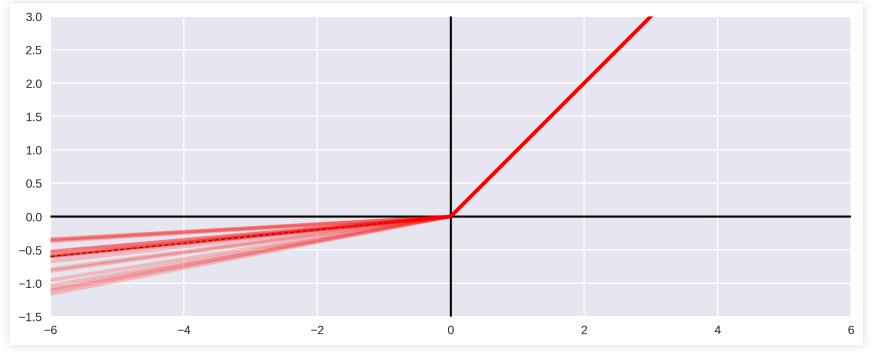
Same as leaky, but a_i is also learned





ReLU variant: Randomized Leaky ReLU

Similar, but $a_i \sim U(l,u)$ $y_i = egin{cases} x_i & x>0\ a_i x_i & u ext{ in test} \end{pmatrix}$



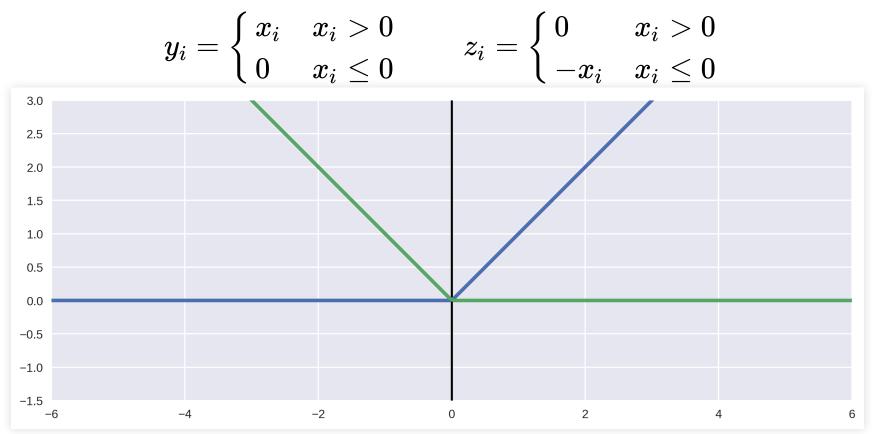
Comparing ReLU variants

Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

- Compared on 2 data sets
- CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each
- CIFAR-100: 60000 32x32 color images in 100 classes of 600 each

Activation	Training Error	Test Error	Activation	Training Error	Test Error
ReLU	0.00318	0.1245	ReLU	0.1356	0.429
Leaky ReLU, $a = 100$	0.0031	0.1266	Leaky ReLU, $a = 100$	0.11552	0.4205
Leaky ReLU, $a = 5.5$	0.00362	0.1120	Leaky ReLU, $a = 5.5$	0.08536	0.4042
PReLU	0.00178	0.1179	PReLU	0.0633	0.4163
RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.00550	0.1119	RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.1141	0.4025
Table 3. Error rate of CIFAR-10 Network in Network with different activation function			Table 4. Error rate of CIFAR-100 Network in Network with different activation function $% \mathcal{T}_{\mathrm{A}}$		

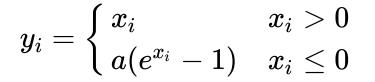
Concatenated ReLU combine two ReLU for x and -x



Shang et. al., Understanding and Improving CNN via CReLUs, 2016

Exponential Linear Unit

 Exponential in negative part





Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015

Activation, Loss and Optimization

Activations: which, when, why?

Hidden layer activations

- Hidden layers perform nonlinear transformations
- Without nonlinear activation functions, all layers would just amount to a single linear transformation
- Activation functions should be fast to compute
- Activation functions should avoid vanishing gradients
- This is why ReLU (esp. leaky variants) are the recommended choice for hidden layers
- Except for specific applications.
- E.g. LSTM, Long short-term memory recurrent networks

Choosing activations

Output layer activations

- Output layers are a different case.
- Choice depends on what we want the model to do
- For regression, output should generally be linear
- We do not want bounded values and there is little need for nonlinearity in the last layer
- For binary classification, sigmoid is a good choice
- The output value $\left[0,1
 ight]$ is useful as a representation of the probability of C_1 , like in logistic regression
- Sigmoid is also good for multilabel classification
- One example may fit with several labels at the same time
- Use one sigmoid output per label

Output layer activations

- For multiclass classification, use softmax:
- Note: multiclass means each example fits only one of several classes

$$\sigma: \mathbb{R}^K o [0,1]^K \qquad \sigma(ec{x})_j = rac{e^{x_j}}{\displaystyle\sum\limits_{k=1}^K e^{x_k}}$$

- Softmax returns a vector where $\sigma_j \in [0,1]$ and $\sum\limits_{k=1}^K \sigma_k = 1$
- This can fit a probability of example belonging to each class C_j
- Softmax is a generalization of the logistic function
- It combines the activations of several neurons

Activation, Loss and Optimization

Loss and likelihood

Basic concepts

We have a set of labelled data

$$\left\{(ec{x}^1,y^1),\ldots,(ec{x}^n,y^n)
ight\}$$

- We want to approximate some function $F(X): X \to Y$ by fitting our parameters
- Given some training set, what are the best parameter values?

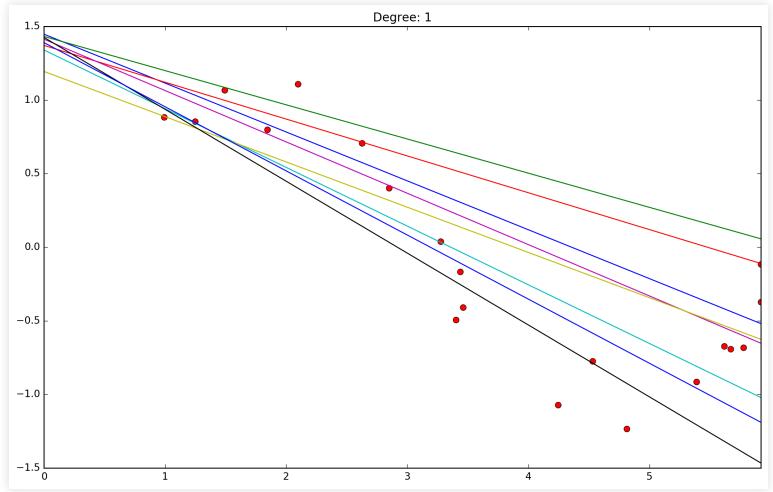
Simple example, linear regression

 $y= heta_1x_1+ heta_2x_2{+}{\dots}{+} heta_{n+1}$

• We have a set of (x, y) examples and want to fit the best line:

$$y= heta_1x+ heta_2$$

What to optimize?



What to optimize?

• Assume y is a function of x plus some error:

$$y = F(x) + \epsilon$$

• We want to approximate F(x) with some $g(x, \theta)$

Assuming $\epsilon \sim N(0,\sigma^2)$ and $g(x, heta) \sim F(x)$, then: $p(y|x) \sim \mathcal{N}(g(x, heta),\sigma^2)$

• Given
$$\mathcal{X} = \{x^t, y^t\}_{t=1}^N$$
 and knowing that $p(x, y) = p(y|x)p(x)$
 $p(X, Y) = \prod_{t=1}^n p(x^t, y^t) = \prod_{t=1}^n p(y^t|x^t) imes \prod_{t=1}^n p(x^t)$

What to optimize?

• The probability of (X, Y) given $g(x, \theta)$ is the likelihood of θ : $l(\theta|\mathcal{X}) = \prod_{t=1}^{n} p(\vec{x}^t, y^t) = \prod_{t=1}^{n} p(y^t|x^t) \times \prod_{t=1}^{n} p(x^t)$

Likelihood

- The examples (\vec{x}, y) are randomly sampled from all possible values
- But θ is not a random variable
- Find the θ for which the data is most probable
- In other words, find the heta of maximum likelihood

Maximum likelihood for linear regression

$$l(heta|\mathcal{X}) = \prod_{t=1}^n p(x^t,y^t) = \prod_{t=1}^n p(y^t|x^t) imes \prod_{t=1}^n p(x^t)$$

First, take the logarithm (same maximum)

$$L(heta|\mathcal{X}) = log\left(\prod_{t=1}^n p(y^t|x^t) imes \prod_{t=1}^n p(x^t)
ight)$$

• We ignore p(X), since it's independent of heta

$$L(heta|\mathcal{X}) \propto log\left(\prod_{t=1}^n p(y^t|x^t)
ight)$$

Replace the expression for the normal distribution:

$$\mathcal{L}(heta|\mathcal{X}) \propto log \prod_{t=1}^n rac{1}{\sigma \sqrt{2\pi}} e^{-[y^t - g(x^t| heta)]^2/2\sigma^2}$$

Maximum likelihood for linear regression

$$\mathcal{L}(heta|\mathcal{X}) \propto log \prod_{t=1}^n rac{1}{\sigma\sqrt{2\pi}} e^{-[y^t - g(x^t| heta)]^2/2\sigma^2}$$

Simplify:

$$egin{split} \mathcal{L}(heta|\mathcal{X}) \propto log \prod_{t=1}^n e^{-[y^t - g(x^t| heta)]^2} \ \mathcal{L}(heta|\mathcal{X}) \propto -\sum_{t=1}^n [y^t - g(x^t| heta)]^2 \end{split}$$

Maximum likelihood for linear regression

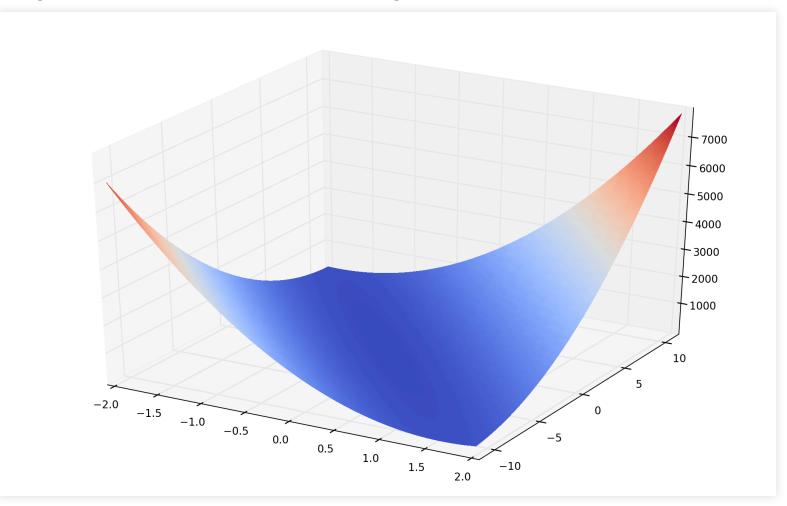
$$\mathcal{L}(heta|\mathcal{X}) \propto -\sum_{t=1}^n [y^t - g(x^t| heta)]^2$$

Max(likelihood) = Min(squared error)

• Note: the squared error is often written like this for convenience:

$$E(heta|\mathcal{X}) = rac{1}{2}\sum_{t=1}^n [y^t - g(x^t| heta)]^2$$

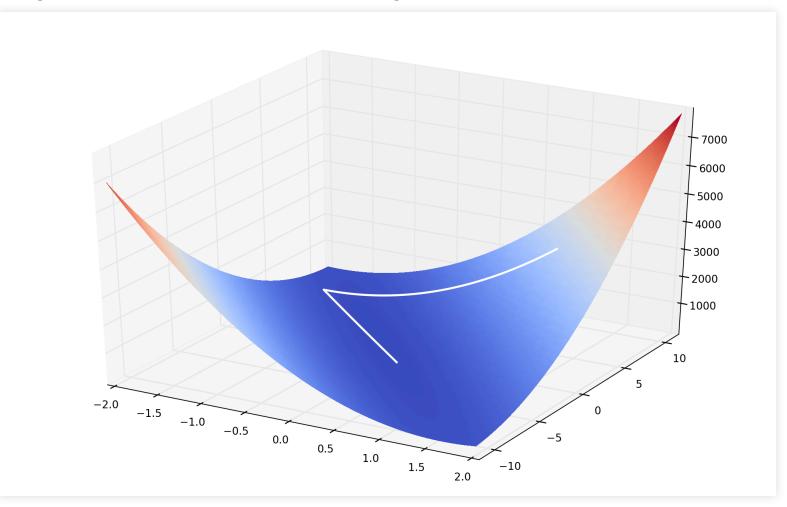
Having the Loss function, we do gradient descent



Having the Loss function, we do gradient descent



Having the Loss function, we do gradient descent



Finding a loss function by ML

$$heta_{ML} = rg\max_{ heta} P(Y|X; heta) = rg\max_{ heta} \; \sum_{i=1}^m \log \; P(y^i|ec{x}^i; heta) \; .$$

m

- We want to maximize likelihood
- This means minimizing cross entropy between model and data
- Loss function depends on the model output:
- Regression: linear output, mean squared error
- Binary classification: class probability, sigmoid output, logistic loss
- (Also for multilabel classification, with probability for each label)
- N-ary classification, use softmax and the softmax cross entropy:

$$-\sum_{c=1}^{C} y_c \log rac{e^{a_c}}{\sum_{k=1}^{C} e^{a_k}}$$

Activation, Loss and Optimization

Optimizers

Minimizing the loss function

- We want to minimize the loss function (e.g. cross-entropy for ML) to obtain θ from some data
- Numerical optimization is outside the scope of this course
- But it's useful to have some knowledge of the optimizers

Minimizing the loss function

- So far we saw tf.optimizers.SGD
- Basic gradient descent algorithm, single learning rate.
- Stochastic gradient descent: use gradient computed at each example, selected at random
- Mini-batch gradient descent: updates after computing the total gradient from a batch of randomly selected examples.
- Can include momentum (and you should use momentum, in general)
- This is just an alias for the tf.keras.optimizers.SGD class
- We'll be using Keras explicitely from now on

Minimizing the loss function:

- Different parameters may best be changed at different rates
- tf.keras.optimizers.Adagrad
- Keeps sum of past (squared) gradients for all parameters
- Divides learning rate of each parameter by this sum
- Parameters with small gradients will have larger learning rates, and vice-versa
- Since Adagrad sums previous gradients, learning rates will shrink
- (good for convex problems)

Minimizing the loss function:

- Some parameters may be left with too large or too small gradients
- tf.keras.optimizers.RMSProp
- Keeps moving root of the mean of the squared gradients (RMS)
- Divides gradient by this moving RMS
- Updates will tend to be similar for all parameters.
- Since it uses a moving average, learning rates don't shrink
- Good for non-convex problems, and often used in recurrent neural networks
- Most famous unpublished optimizer

Minimizing the loss function

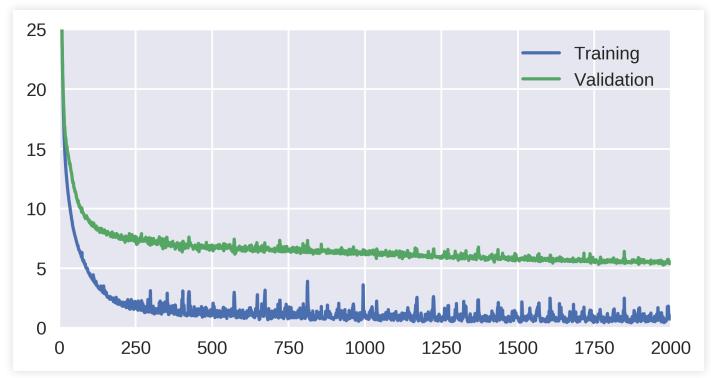
- tf.keras.optimizers.Adam
- Adaptive Moment Estimation (Adam)
- Momentum and different learning rates using an exponentially decaying average over the previous gradients
- tf.keras.optimizers.AdamW
- Adaptive Moment Estimation (Adam)
- Similar to Adam but with Weight Decay, generalizes better than Adam
- Fast to learn but may have convergence problems

How to choose?

- There is no solid theoretical foundation for this
- So you must choose empirically
- Which is just a fancy way of saying try and see what works...

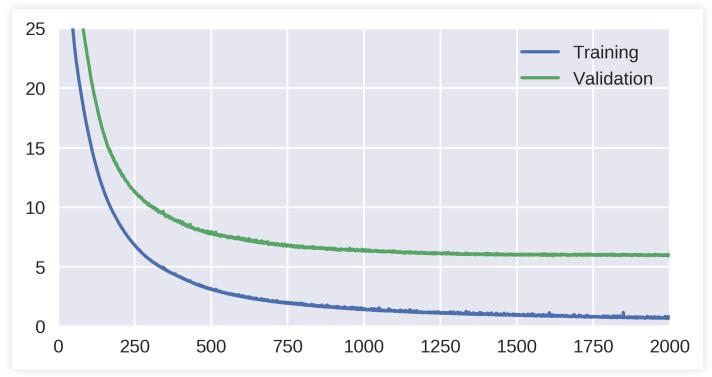
Choosing the best learning rate

- Optimizers can have other parameters, but all have a learning rate
- Too high a learning rate can lead to convergence problems



Learning Rate

- However, if learning rate is too small training can take too long
- Try to make it as high as you can while still converging to low error
- (you can experiment with a subset of your training set, even if overfitting)



Normalizing (standardizing) activations

- Compute running averages and standard deviations during training
- And standardize the inputs to each layer
- Just like we do for the inputs to the network, do for hidden layers too
- Makes learning easier by preventing extreme values
- Eliminates shifts in mean and variance during training
- Reduces the need for each layer to adapt to the changes in the previous one
- This can be done easily in Keras
- The mean, standard deviation and rescaling can all be part of backpropagation
- AutoDiff takes care of the derivatives
- So we can add batch normalization as an additional layer

Activation, Loss and Optimization

Overfitting and Validation

The goal of (supervised) learning is prediction

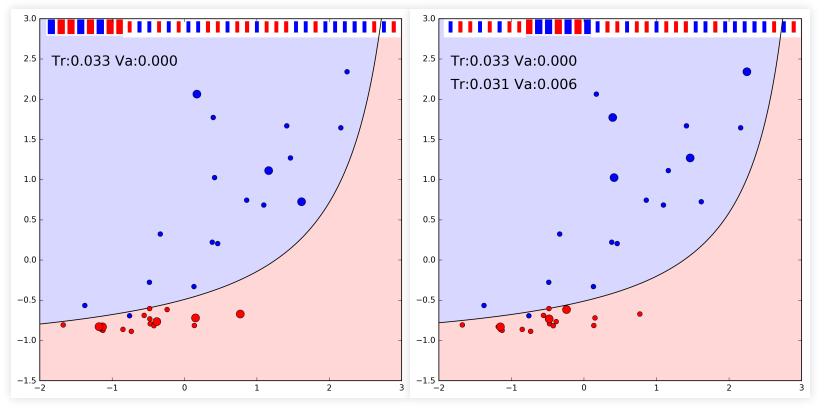
And we want to predict outside of what we know

Overfitting

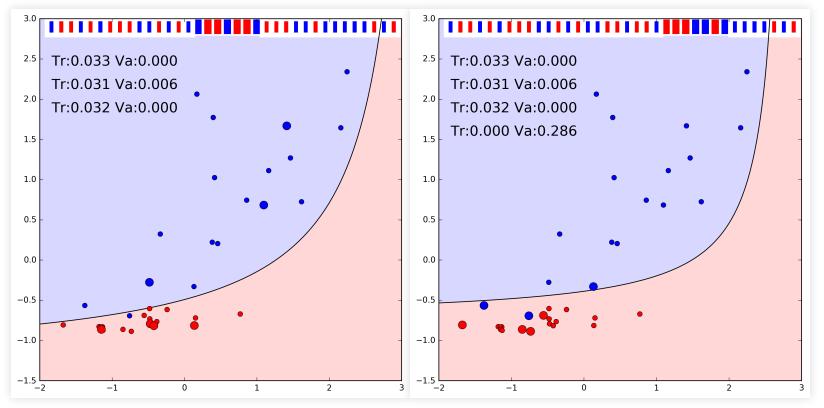
- The problem of adjusting too much to training data
- and losing generalization
- Two ways of solving this:
- Select the right model: model selection
- Adjust training: regularization

- We need to evaluate performance outside the training set
- Test set: we need to keep this for final evaluation of error rate
- We can use a validation set
- Or we can use cross-validation

- Cross-Validation:
- Split training set into K folds, average validations training on the k-1



- Cross-Validation:
- Split training set into K folds, average validations training on the k-1



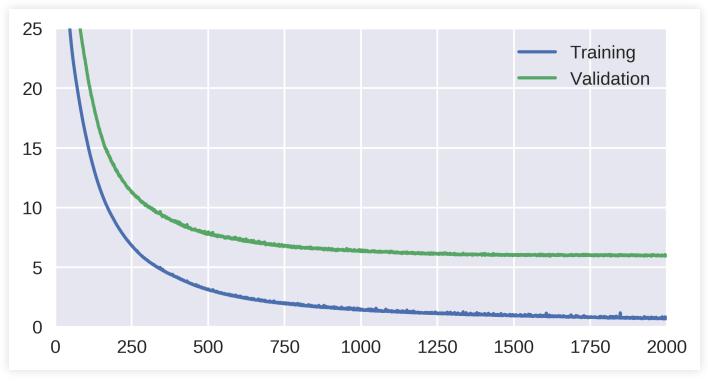
- Option 1: Cross-validation on training set, test
- Good when data is scarcer
- Better estimate of true error
- More computationally demanding
- Option 2: train, validation for preventing overfitting, test
- Good when we have lots of data (which is generally the case for DL)
- Cross-validation is widely used outside deep learning
- With deep learning training and validation is more common
- Deep networks take some time to train

Estimating the true error

- True error: the expected error over all possible data
- We cannot measure this, since we would need all possible data
- Must be estimated with a test set, outside the training set
- This cannot be the validation set if the validation set was used to optimize hyperparameters
- We choose the combination with the smallest validation error, this makes the estimate biased.
- Solution: reserve a test set for final estimate of true error
- This set should not be used for any choice or optimization

Model Selection

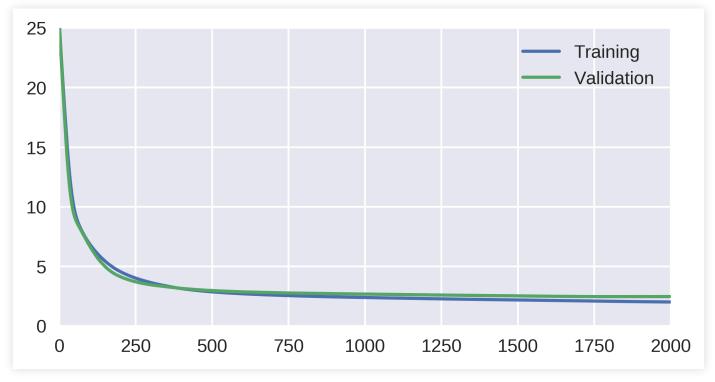
- If the model adapts too much to the data, the training error may be low but the true error high
- Example: Auto MPG problem, 100-50-10-1 network.



Overfitting

Model Selection

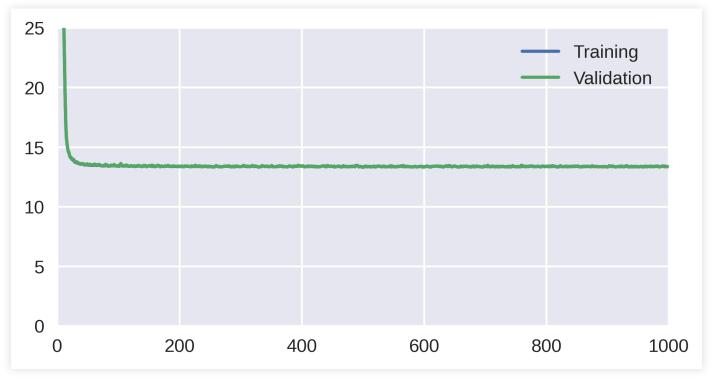
- One way of solving this problem is to use a simpler model (assuming it can fit the data)
- Example: Auto MPG problem, 30-10-1 network.



Overfitting

Model Selection

- If the model is too simple, then error may become high
- (Underfitting)
- Example: Auto MPG problem, 3-2-1 network.



Activation, Loss and Optimization

Regularization in ANN

Penalizing parameter size

To reduce variance, we can force parameters to remain small by adding a penalty to the objective (cost) function:

 $ilde{J}\left(heta;X,y
ight)=J(heta;X,y)+lpha\Omega(heta)$

- Where α is the weight of the regularization
- Note: in ANN, generally only the input weights at each neuron are penalized and not the bias weights.
- The norm function $\Omega(\theta)$ usually takes these forms:
- L² Regularization (ridge regression): penalize $||\theta||^2$
- L 1 Regularization: penalize $\sum_i | heta_i|$

L^2 Regularization is weight decay

If we penalize w^2 , the gradient becomes:

$$abla ilde{J}\left(heta;X,y
ight) =
abla J(heta;X,y) + 2lpha w$$

This means the update rule for the weight becomes

$$w \leftarrow w - \epsilon 2 lpha w - \epsilon
abla J(heta; X, y)$$

- We decrease the magnitude of w to $(1-\epsilon 2lpha)$ per update
- This causes weights that do not contribute to reducing the cost function to shrink

Regularization

L¹ Regularization

If we penalize |w|, the gradient becomes:

$$abla ilde{J}\left(heta;X,y
ight) =
abla J(heta;X,y) + lpha \ sign(w)$$

- This penalizes parameters by a constant value, leading to a sparse solution
- Some weights will have an optimal value of 0

\mathbf{L}^1 vs \mathbf{L}^2 Regularization

- L¹ minimizes number of non-zero weights
- L^2 minimizes overall weight magnitude

Dataset augmentation

- More data is generally better, although not always readily available
- But sometimes we can make more data
- E.g. Image classification:
- Translate images. Rotate or flip, if appropriate (not for character recognition)

Wang et al, 2019, "A survey of face data augmentation".

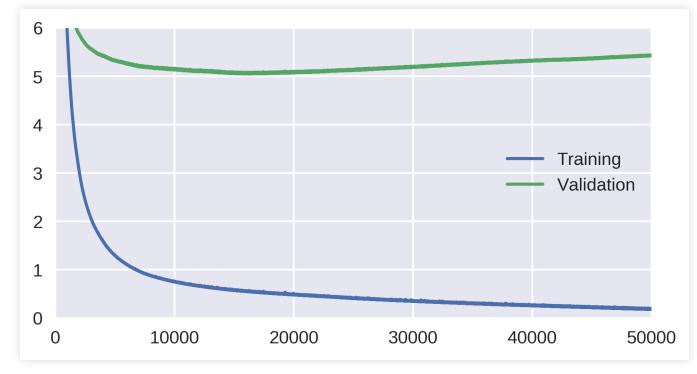
Dataset augmentation by noise injection

- Noise injection is an (implicit) form of dataset augmentation
- Add (carefully) noise to inputs, or even to some hidden layers
- Noise can also be applied to the weights
- Or even the output
- There may be errors in labelling
- Or for label smoothing: use $rac{\epsilon}{(k-1)}$ and $1-\epsilon$ instead of 0 and 1 for target
- This prevents pushing softmax or sigmoid to infinity

Regularization

Early stopping

- Use validation to stop at best point
- Constrains weights to be closer to starting distribution



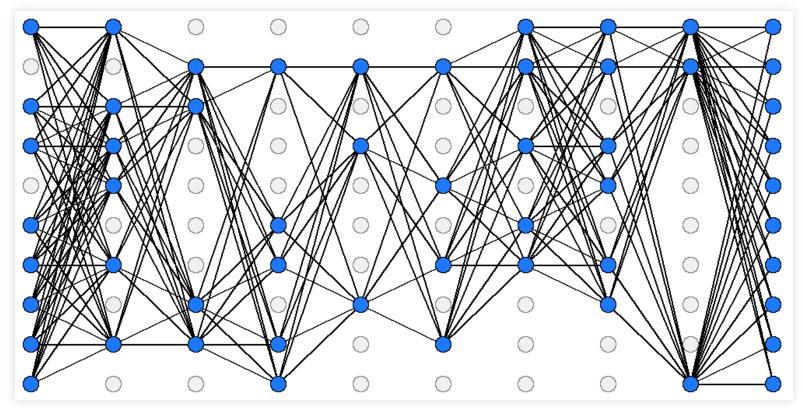
Bagging

- Training a set of models on different subsets of the data
- use the average response (or majority vote)
- Improves performance, as it reduces variance without affecting bias, and ANN can have high variance
- However, it can be costly to train and use many deep models.

Regularization

Dropout

"Turns off" random input and hidden neurons in each minibatch



Dropout

- Dropout does model averaging implicitely
- Turning off neurons at random trains an ensemble of many different networks
- After training, weights are scaled by the probability of being "on"
- (same expected activation value)
- Keras automatically adjust for this when we use a Dropout layer

Activation, Loss and Optimization

Summary

Activation and Loss

Summary

- The vanishing gradients problem, ReLU
- Activations for hidden and output layers
- Loss functions
- Optimizers, learning rate, batch normalization
- Model selection and Regularization

Further reading:

- Goodfellow et.al, Deep learning, Chaps 5-7 and 11, Sects 8.4; 8.7.1
- Tensorflow, activation functions:
- https://www.tensorflow.org/api_guides/python/nn#Activation_Functions