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IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

Summary
■ The vanishing gradients problem
■ ReLU to the rescue
■ Different activations: when and how
■ Loss functions
■ Optimizers
■ Overfitting and model selection
■ Regularization methods in ANN
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Backpropagation in Activation and Loss
■ Output neuron  of layer  receives input from  from layer 

through weight 

■ For a weight  on hidden layer , we must propagate the output
error backwards from all neurons ahead

■ If  is small (vanishing gradient) backpropagation becomes
ineffective as we increase depth

■ This happens with sigmoid activation (or similar, such as TanH)
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■ Single hidden layer, sigmoid, works fine here
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Single hidden layer, sigmoid, doesn't work here with 8 neurons
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■ Increasing depth does not seem to help
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Increasing depth does not seem to help
■ Sigmoid activation saturates and gradients vanish with large coefs.
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Rectified Linear Unit (ReLU)
■ Sigmoid activation units

saturate
=yi

1

1 + e−xi
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Rectified Linear Unit (ReLU)
■ The same happens with

hyperbolic tangent
=yi

−ex e−x

+ex e−x
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Rectified Linear Unit (ReLU)
■ Rectified linear units do

not have this problem
= {yi

xi

0

> 0xi

≤ 0xi
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■ Sigmoid activation, 3 layers
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 3 layers
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 4 layers
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Rectified Linear Unit (ReLU)
■ Advantages of ReLU activation:
• Fast to compute
• Does not saturate for positive values, and gradient is always 1

■ Disadvantage:
• ReLU units can "die" if training makes their weights very negative

• The unit will output 0 and the gradient will become 0, so it will not "revive"

■ There are variants that try to fix this problem
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(Some) ReLU variants
■ Simple ReLU can die if

coefficients are negative
= {yi

xi

0

> 0xi

≤ 0xi
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ReLU variant: Leaky ReLU
■ Leaky ReLU gradient is

never 0
= {yi

xi
xi

ai

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Leaky ReLU
■ Note: in Tensorflow = {yi

xi

aixi

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Parametric ReLU
■ Same as leaky, but  is

also learned
ai = {yi

xi
xi

ai

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Randomized Leaky ReLU
■ Similar, but 

(average of  in test)
∼ U(l, u)ai

l, u
= {yi

xi

aixi

x > 0

≤ 0xi
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Comparing ReLU variants
Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

■ Compared on 2 data sets
• CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each

• CIFAR-100: 60000 32x32 color images in 100 classes of 600 each
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CReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLU

■ Concatenated ReLU combine two ReLU for  and x −x

= { = {yi
xi

0

> 0xi

≤ 0xi

zi
0

−xi

> 0xi

≤ 0xi

Shang et. al., Understanding and Improving CNN via CReLUs, 2016
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Exponential Linear Unit
■ Exponential in negative

part
= {yi

xi

a( − 1)exi

> 0xi

≤ 0xi

Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015
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Hidden layer activations
■ Hidden layers perform nonlinear transformations
• Without nonlinear activation functions, all layers would just amount to a single linear

transformation

■ Activation functions should be fast to compute
■ Activation functions should avoid vanishing gradients
■ This is why ReLU (esp. leaky variants) are the recommended

choice for hidden layers
• Except for specific applications.

• E.g. LSTM, Long short-term memory recurrent networks
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Output layer activations
■ Output layers are a different case.
• Choice depends on what we want the model to do

■ For regression, output should generally be linear
• We do not want bounded values and there is little need for nonlinearity in the last

layer

■ For binary classification, sigmoid is a good choice
• The output value  is useful as a representation of the probability of , like in

logistic regression

■ Sigmoid is also good for multilabel classification
• One example may fit with several labels at the same time
• Use one sigmoid output per label

[0, 1] C1
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Choosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activations

Output layer activations
■ For multiclass classification, use softmax:
• Note: multiclass means each example fits only one of several classes

■ Softmax returns a vector where  and 

■ This can fit a probability of example belonging to each class 

■ Softmax is a generalization of the logistic function
• It combines the activations of several neurons

σ : → [0, 1 σ( =R
K ]K x⃗ )j

exj

∑
k=1

K

exk

∈ [0, 1]σj = 1∑
k=1

K

σk

Cj



29

Activation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and OptimizationActivation, Loss and Optimization

Loss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihood
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Basic concepts
■ We have a set of labelled data

■ We want to approximate some function  by fitting
our parameters

■ Given some training set, what are the best parameter values?

{( , ), . . . , ( , )}x⃗ 1 y1 x⃗ n yn

F(X) : X → Y

Simple example, linear regression
y = + +. . . +θ1x1 θ2x2 θn+1

■ We have a set of  examples and want to fit the best line:(x, y)
y = x +θ1 θ2
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What to optimize?
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LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

What to optimize?
■ Assume  is a function of  plus some error:

■ We want to approximate  with some 

■ Assuming  and , then:

■ Given  and knowing that 

y x
y = F(x) + ϵ

F(x) g(x, θ)

ϵ ∼ N(0, )σ2 g(x, θ) ∼ F(x)
p(y|x) ∼ N (g(x, θ), )σ2

X = { ,xt yt}N
t=1 p(x, y) = p(y|x)p(x)

p(X, Y ) = p( , ) = p( | ) × p( )∏
t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt
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What to optimize?
■ The probability of  given  is the likelihood  of :(X, Y ) g(x, θ) θ

l(θ|X) = p( , ) = p( | ) × p( )∏
t=1

n

x⃗ t yt ∏
t=1

n

yt xt ∏
t=1

n

xt

Likelihood
■ The examples  are randomly sampled from all possible

values
■ But  is not a random variable
■ Find the  for which the data is most probable
• In other words, find the  of maximum likelihood

( , y)x⃗ 

θ

θ

θ
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Maximum likelihood for linear regression
l(θ|X) = p( , ) = p( | ) × p( )∏

t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt

■ First, take the logarithm (same maximum)

■ We ignore , since it's independent of 

■ Replace the expression for the normal distribution:

L(θ|X) = log( p( | ) × p( ))∏
t=1

n

yt xt ∏
t=1

n

xt

p(X) θ

L(θ|X) ∝ log( p( | ))∏
t=1

n

yt xt

L(θ|X) ∝ log∏
t=1

n 1

σ 2π
−−

√
e−[ −g( |θ) /2yt xt ]2 σ2
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Maximum likelihood for linear regression
L(θ|X) ∝ log∏

t=1

n 1

σ 2π
−−

√
e−[ −g( |θ) /2yt xt ]2 σ2

■ Simplify:

L(θ|X) ∝ log∏
t=1

n

e−[ −g( |θ)yt xt ]2

L(θ|X) ∝ − [ − g( |θ)∑
t=1

n

yt xt ]2
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Maximum likelihood for linear regression
L(θ|X) ∝ − [ − g( |θ)∑

t=1

n

yt xt ]2

■ Max(likelihood) = Min(squared error)
• Note: the squared error is often written like this for convenience:

E(θ|X) = [ − g( |θ)
1

2
∑
t=1

n

yt xt ]2
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■ Having the Loss function, we do gradient descent
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■ Having the Loss function, we do gradient descent
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■ Having the Loss function, we do gradient descent
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Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
= P(Y |X; θ) = log P( | ; θ)θML arg max

θ

arg max
θ

∑
i=1

m

yi x⃗ i

■ We want to maximize likelihood
■ This means minimizing cross entropy between model and data
■ Loss function depends on the model output:
• Regression: linear output, mean squared error

• Binary classification: class probability, sigmoid output, logistic loss

• (Also for multilabel classification, with probability for each label)

• N-ary classification, use softmax and the softmax cross entropy:

− log∑
c=1

C

yc

eac

∑C
k=1 eak
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Minimizing the loss function
■ We want to minimize the loss function (e.g. cross-entropy for ML) to

obtain  from some data
■ Numerical optimization is outside the scope of this course
• But it's useful to have some knowledge of the optimizers

θ
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Minimizing the loss function
■ So far we saw tf.optimizers.SGD
• Basic gradient descent algorithm, single learning rate.

• Stochastic gradient descent: use gradient computed at each example, selected at
random

• Mini-batch gradient descent: updates after computing the total gradient from a
batch of randomly selected examples.

• Can include momentum (and you should use momentum, in general)

■ This is just an alias for the tf.keras.optimizers.SGD class
• We'll be using Keras explicitely from now on
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Minimizing the loss function:
■ Different parameters may best be changed at different rates
•  tf.keras.optimizers.Adagrad

• Keeps sum of past (squared) gradients for all parameters

• Divides learning rate of each parameter by this sum

• Parameters with small gradients will have larger learning rates, and vice-versa

• Since Adagrad sums previous gradients, learning rates will shrink

• (good for convex problems)
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OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function:
■ Some parameters may be left with too large or too small gradients
•  tf.keras.optimizers.RMSProp

• Keeps moving root of the mean of the squared gradients (RMS)

• Divides gradient by this moving RMS

• Updates will tend to be similar for all parameters.

• Since it uses a moving average, learning rates don't shrink

• Good for non-convex problems, and often used in recurrent neural networks

• Most famous unpublished optimizer
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Minimizing the loss function
■  tf.keras.optimizers.Adam
• Adaptive Moment Estimation (Adam)

• Momentum and different learning rates using an exponentially decaying average
over the previous gradients

■  tf.keras.optimizers.AdamW
• Adaptive Moment Estimation (Adam)

• Similar to Adam but with Weight Decay, generalizes better than Adam

• Fast to learn but may have convergence problems

How to choose?
■ There is no solid theoretical foundation for this
■ So you must choose empirically
• Which is just a fancy way of saying try and see what works...
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Choosing the best learning rate
■ Optimizers can have other parameters, but all have a learning rate
■ Too high a learning rate can lead to convergence problems
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Learning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning Rate

■ However, if learning rate is too small training can take too long
■ Try to make it as high as you can while still converging to low error
• (you can experiment with a subset of your training set, even if overfitting)
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Batch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch Normalization

Normalizing (standardizing) activations
■ Compute running averages and standard deviations during training
• And standardize the inputs to each layer

■ Just like we do for the inputs to the network, do for hidden layers
too

• Makes learning easier by preventing extreme values

• Eliminates shifts in mean and variance during training

• Reduces the need for each layer to adapt to the changes in the previous one

■ This can be done easily in Keras
• The mean, standard deviation and rescaling can all be part of backpropagation

• AutoDiff takes care of the derivatives

• So we can add batch normalization as an additional layer
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The goal of (supervised) learning is prediction
■ And we want to predict outside of what we know
Overfitting
■ The problem of adjusting too much to training data
• and losing generalization

■ Two ways of solving this:
• Select the right model: model selection
• Adjust training: regularization
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How to check for overfitting
■ We need to evaluate performance outside the training set
• Test set: we need to keep this for final evaluation of error rate

■ We can use a validation set
■ Or we can use cross-validation
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How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1
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How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1
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How to check for overfitting
■ Option 1: Cross-validation on training set, test
• Good when data is scarcer
• Better estimate of true error
• More computationally demanding

■ Option 2: train, validation for preventing overfitting, test
• Good when we have lots of data (which is generally the case for DL)

■ Cross-validation is widely used outside deep learning
■ With deep learning training and validation is more common
• Deep networks take some time to train
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Estimating the true error
■ True error: the expected error over all possible data
• We cannot measure this, since we would need all possible data

■ Must be estimated with a test set, outside the training set
■ This cannot be the validation set if the validation set was used to

optimize hyperparameters
• We choose the combination with the smallest validation error, this makes the

estimate biased.

■ Solution: reserve a test set for final estimate of true error
• This set should not be used for any choice or optimization
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Model Selection
■ If the model adapts too much to the data, the training error may be

low but the true error high
• Example: Auto MPG problem, 100-50-10-1 network.
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OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ One way of solving this problem is to use a simpler model

(assuming it can fit the data)
• Example: Auto MPG problem, 30-10-1 network.
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OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ If the model is too simple, then error may become high
• (Underfitting)
• Example: Auto MPG problem, 3-2-1 network.
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Regularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANN
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Penalizing parameter size
■ To reduce variance, we can force parameters to remain small by

adding a penalty to the objective (cost) function:

■ Where  is the weight of the regularization
• Note: in ANN, generally only the input weights at each neuron are penalized and

not the bias weights.

■ The norm function  usually takes these forms:

• L  Regularization (ridge regression): penalize 
• L  Regularization: penalize 

(θ; X, y) = J(θ; X, y) + αΩ(θ)J
~

α

Ω(θ)
2 ||θ||2

1 | |∑i θi
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L  Regularization is weight decay2

■ If we penalize , the gradient becomes:

■ This means the update rule for the weight becomes

■ We decrease the magnitude of  to  per update
■ This causes weights that do not contribute to reducing the cost

function to shrink

w2

∇ (θ; X, y) = ∇J(θ; X, y) + 2αwJ
~

w ← w − ϵ2αw − ϵ∇J(θ; X, y)

w (1 − ϵ2α)
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L  Regularization1

■ If we penalize , the gradient becomes:

■ This penalizes parameters by a constant value, leading to a sparse
solution

• Some weights will have an optimal value of 0

|w|
∇ (θ; X, y) = ∇J(θ; X, y) + α sign(w)J

~

L  vs L  Regularization1 2

■ L  minimizes number of non-zero weights
■ L  minimizes overall weight magnitude

1

2
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Dataset augmentation
■ More data is generally better, although not always readily available
■ But sometimes we can make more data
■ E.g. Image classification:
• Translate images. Rotate or flip, if appropriate (not for character recognition)

Wang et al, 2019, "A survey of face data augmentation".
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Dataset augmentation by noise injection
■ Noise injection is an (implicit) form of dataset augmentation
• Add (carefully) noise to inputs, or even to some hidden layers

■ Noise can also be applied to the weights
■ Or even the output
• There may be errors in labelling

• Or for label smoothing: use  and  instead of 0 and 1 for target

• This prevents pushing softmax or sigmoid to infinity

ϵ
(k−1)

1 − ϵ
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Early stopping
■ Use validation to stop at best point
• Constrains weights to be closer to starting distribution
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Bagging
■ Training a set of models on different subsets of the data
■ use the average response (or majority vote)
■ Improves performance, as it reduces variance without affecting

bias, and ANN can have high variance
■ However, it can be costly to train and use many deep models.
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Dropout
■ "Turns off" random input and hidden neurons in each minibatch
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RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Dropout
■ Dropout does model averaging implicitely
■ Turning off neurons at random trains an ensemble of many different

networks
■ After training, weights are scaled by the probability of being "on"
• (same expected activation value)

■ Keras automatically adjust for this when we use a Dropout layer
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ The vanishing gradients problem, ReLU
■ Activations for hidden and output layers
■ Loss functions
■ Optimizers, learning rate, batch normalization
■ Model selection and Regularization
Further reading:
■ Goodfellow et.al, Deep learning, Chaps 5-7 and 11, Sects 8.4; 8.7.1
■ Tensorflow, activation functions:
• https://www.tensorflow.org/api_guides/python/nn#Activation_Functions




