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Summary
m The vanishing gradients problem

m RelU to the rescue

m Different activations: when and how
m Loss functions

m Optimizers

m Overfitting and model selection

m Regularization methods in ANN




Fessrandi@ptimization

Vanishing gradients




Backpropagation in Activation and Loss
m Output neuron n of layer k receives input from m from layer 2

through weight 4
A, = —notele = (] — s )s) (1= sl,)sh, = nOwmsl,

5sim 5netim OWinkn
m For a weight m on hidden layer 7, we must propagate the output
error backwards from all neurons ahead

i sl j - -
Aw = —p (Z 0E;, 08y, 5netkp> ds;, Onet;,

J J J J .
> 5skp 5netkp 53m 5netin OWpmin

m If 0s is small (vanishing gradient) backpropagation becomes
ineffective as we increase depth

m This happens with sigmoid activation (or similar, such as TanH)



Vanishingigradients

m Single hidden layer, sigmoid, works fine here
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Vanishingigradients

m Single hidden layer, sigmoid, doesn't work here with 8 neurons

b Epoch Learning rate Activation Regularization Regularization rate Problem type
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Vanishingigradients

m Increasing depth does not seem to help

Activation Regularization Regularization rate

b Epoch Learning rate
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m Increasing depth does not seem to help

b ° Epoch Learning rate Activation Regularization Regularization rate Problem type
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Vanishinglgradients

m Increasing depth does not seem to help

m Sigmoid activation saturates and gradients vanish with large coefs.
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Rectified Linear Unit




Rectified Linear Unit (ReLU)

m Sigmoid activation units
saturate

Yi

T + e %
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Rectified Linear Unit (ReLU)

m The same happens with
hyperbolic tangent

e’ —e
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Rectified Linear Unit (ReLU)
m Rectified linear units do { z; x; >0

Yi

not have this problem 0 ;<0

-1
-
-
-
——
———
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RelEd

m Sigmoid activation, 3 layers
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|
001 ,472 0.03 b Sigmoid v MNone v o d Classification v
DATA FEATURES + — 3 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.500
you want to use? you want to feed in? h @& h & Y= Training loss 0.452
8 neurons 8 neurons B neurons
<[
o mong
@ ‘.-"w .,
= il T “4
Xz ?‘, f '\ a.
Ratio of training to " ,o“"m'q.. " “
: i . = S
test data: 50% . . LW 4 T 3 | o
1} 'é 2 .
L ™ ;. =
o - . o ]
Noise: 0 Xz . . e et &
.— -
. .
“"'m .#’
Batch size: 10 X1)2 5
—_— _‘
5 2 o 1 2 3 4 5 6
REGENERATE sin(X1)
Colors shows
- data, neuron and U
sin(Xz) ) 1 i} 1
weight values.

[ Showtestdata [] Discretize output

13



RelEd

m RelU activation, 3 layers

b Epoch Learning rate Activation Regularization Regularization rate Problem type
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RelEd

DATA
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RelEd

Rectified Linear Unit (ReLU)
m Advantages of RelLU activation:

e Fast to compute
e Does not saturate for positive values, and gradient is always 1

m Disadvantage:

e RelLU units can "die" if training makes their weights very negative

* The unit will output 0 and the gradient will become 0, so it will not "revive

m There are variants that try to fix this problem

16



(Some) RelLU variants

m Simple RelLU can die if
coefficients are negative

Yi

Z;

0

x; >0
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RelLU variant: Leaky RelLU

m Leaky RelLU gradient is
never 0




RelLU variant: Leaky RelLU
m Note: in Tensorflow

Yi

{

Z;

a;T;

x>0
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RelLU variant: Parametric RelLU

m Same as leaky, but a; is o {«’Bz z >0
also learned ST1E oz <0
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ReLU variant: Randomized Leaky RelL U
= Similar, buta; ~ U(l, ) v = {a: z >0
(average of [, u in test) a;x; x; <0
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RelEd

Comparing RelLU variants

Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

m Compared on 2 data sets

* CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each
e CIFAR-100: 60000 32x32 color images in 100 classes of 600 each

Activation Training Error ~ Test Error Activation Training Error  Test Error
ReLU 0.00318 0.1245 ReLU 0.1356 0.429
Leaky ReLU, a = 100 0.0031 0.1266 Leaky ReLU, a = 100 0.11552 0.4205
Leaky ReLU, a = 5.5 0.00362 0.1120 Leaky ReLU, a = 5.5 0.08536 0.4042
PReLU 0.00178 0.1179 PReLLU 0.0633 0.4163
RReLU (y;: = /%)  0.00550 0.1119 RReLU (y;; = z;;/32%) 0.1141 0.4025

Table 3. Error rate of CIFAR-10 Network in Network with ~Table 4. Error rate of CIFAR-100 Network in Network with
different activation function different activation function
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CRelly

m Concatenated ReLU combine two RelLU for £ and —x

_{LEZ x; >0 = 0 x; >0
vi 0 CIZZSO ’ —I; QEZSO

-6 -4 -2 0 2 4

Shang et. al., Understanding and Improving CNN via CReLUs, 2016
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ELEY

Exponential Linear Unit

m Exponential in negative g = {«’Ez
part a(e® — 1)

x; >0

-6 -4 -2 0 2

Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015
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andl@ptimization

Activations: which, when, why?
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€hoesing

Hidden layer activations
m Hidden layers perform nonlinear transformations

e Without nonlinear activation functions, all layers would just amount to a single linear
transformation

m Activation functions should be fast to compute
m Activation functions should avoid vanishing gradients

m This is why ReLU (esp. leaky variants) are the recommended
choice for hidden layers

e Except for specific applications.
* E.g. LSTM, Long short-term memory recurrent networks

26



€hoesing

Output layer activations

m Output layers are a different case.

e Choice depends on what we want the model to do

m For regression, output should generally be linear

* We do not want bounded values and there is little need for nonlinearity in the last
layer

m For binary classification, sigmoid is a good choice

* The output value |0, 1] is useful as a representation of the probability of C1, like in
logistic regression

m Sigmoid is also good for multilabel classification

* One example may fit with several labels at the same time
* Use one sigmoid output per label

27



€hoesing

Output layer activations
m For multiclass classification, use softmax:

* Note: multiclass means each example fits only one of several classes

o:RE 50,1 o&),= —

K
D, e
k=1

K
= Softmax returns a vector where o; € [0,1] and > o =1
k=1

m This can fit a probability of example belonging to each class Cj

m Softmax is a generalization of the logistic function

e |t combines the activations of several neurons

28



Fessrandi®ptimization

Loss and likelihood

29



[Sikeliheoed

Basic concepts
m \We have a set of labelled data

{@.y"),....@"y")}

= We want to approximate some function F'(X) : X — Y by fitting
our parameters

m Given some training set, what are the best parameter values?

Simple example, linear regression
y =011 + Oz t... +0,44

= We have a set of (x, ) examples and want to fit the best line:
Yy = 91513 + 92
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Sikeliheoed

What to optimize?

1.5

Degree: 1

\
1.0} = V
05}
0.0}

—0.5}

—1.0}

-1.5
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[Sikeliheoed

What to optimize?

m Assume y is a function of x plus some error:
y=F(z)+¢

= We want to approximate F'(x) with some g(z, 0)

= Assuming € ~ N(0,0?) and g(z,6) ~ F(z), then:

p(ylz) ~ N(g(z,0),0%)
= Given X = {z*, y*}¥ | and knowing that p(z, y) = p(y|z)p(z)

p(X,Y) = f[pw,yt) _ f[p(yﬂwt) <[ p)

=1

[\
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[Sikeliheoed

What to optimize?
= The probability of (X, Y') given g(x, 0) is the

likelihood

1(6]%) = f[p«z’f,yt) _ f[myt\wt) Y f[pw)

Likelihood

of 0:

m The examples (Z, y) are randomly sampled from all possible

values
m But @ is not a random variable

= Find the @ for which the data is most probable

 In other words, find the 8 of maximum likelihood
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[Sikeliheoed

Maximum likelihood for linear regression

= ][ r(=",v") = [ [ p(v'|2") x ] ] p(«*
t=1 t=1 t=1

m First, take the logarithm (same maximum)
= log (Hp(yt|wt) X Hp(fct))
t=1 t=1
= We ignore p(X), since it's independent of 6

L(6]X) o log (ﬁp(ytwt))

m Replace the expression for the normal distribution:

oclcgy]i[

z'(9)]* /20
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[Sikeliheoed

Maximum likelihood for Iinear regression

m Simplify:

oclogH — [yt —g('|6))*

L(6]%) o Z[y — g('10)]*

t=1

z'(9)]* /20
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[Sikeliheoed

Maximum likelihood for linear regression

n

L(6]X) < — ) [y — g(2'(6)]

t=1
m Max(likelihood) = Min(squared error)

* Note: the squared error is often written like this for convenience:

BOIX) = 3 Y Iyt~ oa!lo)?
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[Sikeliheoed

m Having the Loss function, we do gradient descent
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[Sikeliheoed

m Having the Loss function, we do gradient descent
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[Sikeliheoed

m Having the Loss function, we do gradient descent
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MaximUumiliikelinoed

Finding a loss function by ML
0y, = arg max P(Y|X;60) = arg max Zlog P(y'|Z; 0)
0 0 i=1

m We want to maximize likelihood

m This means minimizing cross entropy between model and data
m Loss function depends on the model output:

* Regression: linear output, mean squared error

e Binary classification: class probability, sigmoid output, logistic loss

* (Also for multilabel classification, with probability for each label)

e N-ary classification, use softmax and the softmax cross entropy:

C el
o Z Ye log

c=1 ZkC=1 e
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ActivationMfessfandi@®ptimization

Optimizers

41



Optimizers

Minimizing the loss function

m We want to minimize the loss function (e.g. cross-entropy for ML) to
obtain € from some data

m Numerical optimization is outside the scope of this course

e Butit's useful to have some knowledge of the optimizers

42



©Optimizers

Minimizing the loss function
m So far we saw tf.optimizers.SGD

e Basic gradient descent algorithm, single learning rate.

e Stochastic gradient descent: use gradient computed at each example, selected at
random

e Mini-batch gradient descent: updates after computing the total gradient from a
batch of randomly selected examples.

e Can include momentum (and you should use momentum, in general)

m This is just an alias for the tf.keras.optimizers.SGD class

* We'll be using Keras explicitely from now on
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©Optimizers

Minimizing the loss function:
m Different parameters may best be changed at different rates

e tf.keras.optimizers.Adagrad

» Keeps sum of past (squared) gradients for all parameters

Divides learning rate of each parameter by this sum

Parameters with small gradients will have larger learning rates, and vice-versa

Since Adagrad sums previous gradients, learning rates will shrink

* (good for convex problems)
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©Optimizers

Minimizing the loss function:
m Some parameters may be left with too large or too small gradients

e tf.keras.optimizers.RMSProp

Keeps moving root of the mean of the squared gradients (RMS)

Divides gradient by this moving RMS

Updates will tend to be similar for all parameters.

Since it uses a moving average, learning rates don't shrink

e (Good for non-convex problems, and often used in recurrent neural networks

Most famous unpublished optimizer
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©Optimizers

Minimizing the loss function
m tf.keras.optimizers.Adam

e Adaptive Moment Estimation (Adam)

e Momentum and different learning rates using an exponentially decaying average
over the previous gradients

m tf.keras.optimizers.AdamW

e Adaptive Moment Estimation (Adam)
e Similar to Adam but with Weight Decay, generalizes better than Adam

e Fast to learn but may have convergence problems

How to choose?
m There is no solid theoretical foundation for this

m So you must choose empirically

—Which-is-just-a-fancy-way-of saying-try-and-see-what-works- 26



LEETMING] [REUE

Choosing the best learning rate
m Optimizers can have other parameters, but all have a learning rate

m Too high a learning rate can lead to convergence problems

25
= Training

20 — Validation
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10

5

0
0 250 500 750 1000 1250 1500 1750 2000
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LEETMING] [REUE

m However, if learning rate is too small training can take too long

m Try to make it as high as you can while still converging to low error

* (you can experiment with a subset of your training set, even if overfitting)

25
= Training

20 — Validation
15
10

5

0

0 250 500 750 1000 1250 1500 1750 2000
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BatchiNeorma

Normalizing (standardizing) activations
m Compute running averages and standard deviations during training
e And standardize the inputs to each layer

m Just like we do for the inputs to the network, do for hidden layers
too

* Makes learning easier by preventing extreme values
e Eliminates shifts in mean and variance during training

* Reduces the need for each layer to adapt to the changes in the previous one

m This can be done easily in Keras

e The mean, standard deviation and rescaling can all be part of backpropagation
» AutoDiff takes care of the derivatives

e So we can add batch normalization as an additional layer
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Fessfandi®piimization

Overfitting and Validation
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@yerfitting Validation

The goal of (supervised) learning is prediction
m And we want to predict outside of what we know
Overfitting

m The problem of adjusting too much to training data

e and losing generalization

m Two ways of solving this:

e Select the right model: model selection
e Adjust training: regularization
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@verfitting Validation

How to check for overfitting
m We need to evaluate performance outside the training set

» Test set: we need to keep this for final evaluation of error rate
m We can use a validation set

m Or we can use cross-validation
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@yerfitting Validation

How to check for overfitting

m Cross-Validation:

» Split training set into K folds, average validations training on the k-1
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@yerfitting Validation

How to check for overfitting

m Cross-Validation:

» Split training set into K folds, average validations training on the k-1
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@yerfitting Validation

How to check for overfitting
m Option 1: Cross-validation on training set, test

* Good when data is scarcer
» Better estimate of true error
* More computationally demanding

m Option 2: train, validation for preventing overfitting, test
e Good when we have lots of data (which is generally the case for DL)
m Cross-validation is widely used outside deep learning

m With deep learning training and validation is more common

* Deep networks take some time to train
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@yerfitting Validation

Estimating the true error
m True error: the expected error over all possible data
* \We cannot measure this, since we would need all possible data

m Must be estimated with a test set, outside the training set

m This cannot be the validation set if the validation set was used to
optimize hyperparameters

e \We choose the combination with the smallest validation error, this makes the
estimate biased.

m Solution: reserve a test set for final estimate of true error

e This set should not be used for any choice or optimization
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@yeifitting

Model Selection

m If the model adapts too much to the data, the training error may be
low but the true error high

e Example: Auto MPG problem, 100-50-10-1 network.
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@yeifitting

Model Selection

m One way of solving this problem is to use a simpler model
(assuming it can fit the data)

e Example: Auto MPG problem, 30-10-1 network.

25
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@yeifitting

Model Selection
m If the model is too simple, then error may become high

* (Underfitting)
e Example: Auto MPG problem, 3-2-1 network.
25

— Training

20 - \/alidation

15LA

10

0 200 400 600 800 1000
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Fessfandi®ptimization

Regularization in ANN
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Regulanization

Penalizing parameter size

m To reduce variance, we can force parameters to remain small by
adding a penalty to the objective (cost) function:

~

J(0; X,y) = J(6; X, y) + a€2(0)
m Where « is the weight of the regularization

* Note: in ANN, generally only the input weights at each neuron are penalized and
not the bias weights.

= The norm function €2(6) usually takes these forms:

« L2 Regularization (ridge regression): penalize ||6]|”

« L! Regularization: penalize > i 10i)
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Regulanization

L2 Regularization is weight decay

m |f we penalize w?, the gradient becomes:
VJ(0;X,y) =VJ(6; X,y) + 2aw
m This means the update rule for the weight becomes
w <+ w— e2aw — eVJ(6; X, y)
= We decrease the magnitude of w to (1 — €2a) per update

m This causes weights that do not contribute to reducing the cost
function to shrink
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Regulanization

L! Regularization

= If we penalize |w/|, the gradient becomes:
VJ(0;X,y) =VJ(6; X,y) + a sign(w)
m This penalizes parameters by a constant value, leading to a sparse
solution

e Some weights will have an optimal value of 0

L! vs L2 Regularization
= L! minimizes number of non-zero weights

= L2 minimizes overall weight magnitude
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Regulanization

Dataset augmentation

m More data is generally better, although not always readily available
m But sometimes we can make more data

m E.g. Image classification:

* Translate images. Rotate or flip, if appropriate (not for character recognition)

NIVER J:-i-i'

L3N "”!f'l.._ ;“;‘."'""*" : i " JI'-t _.‘ F'Fi ;:“
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]
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Source

Wang et al, 2019, "A survey of face data augmentation".
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Regllanization

Dataset augmentation by noise injection
m Noise injection is an (implicit) form of dataset augmentation
e Add (carefully) noise to inputs, or even to some hidden layers

m Noise can also be applied to the weights

m Or even the output

* There may be errors in labelling

€

(h-1)

e Or for label smoothing: use and 1 — € instead of 0 and 1 for target

e This prevents pushing softmax or sigmoid to infinity
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Regulanization

Early stopping
m Use validation to stop at best point
» Constrains weights to be closer to starting distribution
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sgulanization

Bagging

m Training a set of models on different subsets of the data
m use the average response (or majority vote)

m Improves performance, as it reduces variance without affecting
bias, and ANN can have high variance

m However, it can be costly to train and use many deep models.
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Dropout
m "Turns off' random input and hidden neurons in each minibatch
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sgulanization

Dropout
m Dropout does model averaging implicitely

m Turning off neurons at random trains an ensemble of many different
networks

m After training, weights are scaled by the probability of being "on"
* (same expected activation value)

m Keras automatically adjust for this when we use a Dropout layer
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Activationgfessfandi@®ptimization

Summary
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LESS

Summary
m The vanishing gradients problem, RelLU

m Activations for hidden and output layers

m Loss functions

m Optimizers, learning rate, batch normalization

m Model selection and Regularization

Further reading:

m Goodfellow et.al, Deep learning, Chaps 5-7 and 11, Sects 8.4; 8.7.1

m Tensorflow, activation functions:

e https://www.tensorflow.org/api_guides/python/nn#Activation_Functions
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