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IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

Summary
■ The vanishing gradients problem
■ ReLU to the rescue
■ Different activations: when and how
■ Loss functions
■ Optimizers
■ Overfitting and model selection
■ Regularization methods in ANN
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Backpropagation in Activation and Loss
■ Output neuron  of layer  receives input from  from layer 

through weight 

■ For a weight  on hidden layer , we must propagate the output
error backwards from all neurons ahead

■ If  is small (vanishing gradient) backpropagation becomes
ineffective as we increase depth

■ This happens with sigmoid activation (or similar, such as TanH)
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Single hidden layer, sigmoid, works fine here
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Single hidden layer, sigmoid, doesn't work here with 8 neurons
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■ Increasing depth does not seem to help
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Increasing depth does not seem to help
■ Sigmoid activation saturates and gradients vanish with large coefs.
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Rectified Linear Unit (ReLU)
■ Sigmoid activation units

saturate
=yi

1

1 + e−xi
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Rectified Linear Unit (ReLU)
■ The same happens with

hyperbolic tangent
=yi

−ex e−x

+ex e−x
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Rectified Linear Unit (ReLU)
■ Rectified linear units do

not have this problem
= {yi

xi

0

> 0xi

≤ 0xi
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■ Sigmoid activation, 3 layers
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 3 layers
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 4 layers
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Rectified Linear Unit (ReLU)
■ Advantages of ReLU activation:
• Fast to compute
• Does not saturate for positive values, and gradient is always 1

■ Disadvantage:
• ReLU units can "die" if training makes their weights very negative

• The unit will output 0 and the gradient will become 0, so it will not "revive"

■ There are variants that try to fix this problem
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(Some) ReLU variants
■ Simple ReLU can die if

coefficients are negative
= {yi

xi

0

> 0xi

≤ 0xi
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ReLU variant: Leaky ReLU
■ Leaky ReLU gradient is

never 0
= {yi

xi
xi

ai

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Leaky ReLU
■ Note: in Tensorflow = {yi

xi

aixi

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Parametric ReLU
■ Same as leaky, but  is

also learned
ai = {yi

xi
xi

ai

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Randomized Leaky ReLU
■ Similar, but 

(average of  in test)
∼ U(l, u)ai

l, u
= {yi

xi

aixi

x > 0

≤ 0xi



22

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Comparing ReLU variants
Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

■ Compared on 2 data sets
• CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each

• CIFAR-100: 60000 32x32 color images in 100 classes of 600 each
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CReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLU

■ Concatenated ReLU combine two ReLU for  and x −x

= { = {yi
xi

0

> 0xi

≤ 0xi

zi
0

−xi

> 0xi

≤ 0xi

Shang et. al., Understanding and Improving CNN via CReLUs, 2016
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Exponential Linear Unit
■ Exponential in negative

part
= {yi

xi

a( − 1)exi

> 0xi

≤ 0xi

Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015
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Hidden layer activations
■ Hidden layers perform nonlinear transformations
• Without nonlinear activation functions, all layers would just amount to a single linear

transformation

■ Activation functions should be fast to compute
■ Activation functions should avoid vanishing gradients
■ This is why ReLU (esp. leaky variants) are the recommended

choice for hidden layers
• Except for specific applications.

• E.g. LSTM, Long short-term memory recurrent networks
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Output layer activations
■ Output layers are a different case.
• Choice depends on what we want the model to do

■ For regression, output should generally be linear
• We do not want bounded values and there is little need for nonlinearity in the last

layer

■ For binary classification, sigmoid is a good choice
• The output value  is useful as a representation of the probability of , like in

logistic regression

■ Sigmoid is also good for multilabel classification
• One example may fit with several labels at the same time
• Use one sigmoid output per label

[0, 1] C1
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Choosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activations

Output layer activations
■ For multiclass classification, use softmax:
• Note: multiclass means each example fits only one of several classes

■ Softmax returns a vector where  and 

■ This can fit a probability of example belonging to each class 

■ Softmax is a generalization of the logistic function
• It combines the activations of several neurons

σ : → [0, 1 σ( =R
K ]K x⃗ )j
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Loss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihood
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Basic concepts
■ We have a set of labelled data

■ We want to approximate some function  by fitting
our parameters

■ Given some training set, what are the best parameter values?

{( , ), . . . , ( , )}x⃗ 1 y1 x⃗ n yn

F(X) : X → Y

Simple example, linear regression
y = + +. . . +θ1x1 θ2x2 θn+1

■ We have a set of  examples and want to fit the best line:(x, y)
y = x +θ1 θ2
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What to optimize?
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LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

What to optimize?
■ Assume  is a function of  plus some error:

■ We want to approximate  with some 

■ Assuming  and , then:

■ Given  and knowing that 

y x
y = F(x) + ϵ

F(x) g(x, θ)

ϵ ∼ N(0, )σ2 g(x, θ) ∼ F(x)
p(y|x) ∼ N (g(x, θ), )σ2

X = { ,xt yt}N
t=1 p(x, y) = p(y|x)p(x)

p(X, Y ) = p( , ) = p( | ) × p( )∏
t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt



33
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What to optimize?
■ The probability of  given  is the likelihood  of :(X, Y ) g(x, θ) θ

l(θ|X) = p( , ) = p( | ) × p( )∏
t=1

n

x⃗ t yt ∏
t=1

n

yt xt ∏
t=1

n

xt

Likelihood
■ The examples  are randomly sampled from all possible

values
■ But  is not a random variable
■ Find the  for which the data is most probable
• In other words, find the  of maximum likelihood

( , y)x⃗ 

θ

θ

θ
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Maximum likelihood for linear regression
l(θ|X) = p( , ) = p( | ) × p( )∏

t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt

■ First, take the logarithm (same maximum)

■ We ignore , since it's independent of 

■ Replace the expression for the normal distribution:

L(θ|X) = log( p( | ) × p( ))∏
t=1

n

yt xt ∏
t=1

n

xt

p(X) θ

L(θ|X) ∝ log( p( | ))∏
t=1

n

yt xt

L(θ|X) ∝ log∏
t=1

n 1

σ 2π
−−

√
e−[ −g( |θ) /2yt xt ]2 σ2
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Maximum likelihood for linear regression
L(θ|X) ∝ log∏

t=1

n 1

σ 2π
−−

√
e−[ −g( |θ) /2yt xt ]2 σ2

■ Simplify:

L(θ|X) ∝ log∏
t=1

n

e−[ −g( |θ)yt xt ]2

L(θ|X) ∝ − [ − g( |θ)∑
t=1

n

yt xt ]2
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Maximum likelihood for linear regression
L(θ|X) ∝ − [ − g( |θ)∑

t=1

n

yt xt ]2

■ Max(likelihood) = Min(squared error)
• Note: the squared error is often written like this for convenience:

E(θ|X) = [ − g( |θ)
1

2
∑
t=1

n

yt xt ]2
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■ Having the Loss function, we do gradient descent
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■ Having the Loss function, we do gradient descent
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■ Having the Loss function, we do gradient descent
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Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
= P(Y |X; θ) = log P( | ; θ)θML arg max

θ

arg max
θ

∑
i=1

m

yi x⃗ i

■ We want to maximize likelihood
■ This means minimizing cross entropy between model and data
■ Loss function depends on the model output:
• Regression: linear output, mean squared error

• Binary classification: class probability, sigmoid output, logistic loss

• (Also for multilabel classification, with probability for each label)

• N-ary classification, use softmax and the softmax cross entropy:

− log∑
c=1

C

yc

eac

∑C
k=1 eak
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OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function
■ We want to minimize the loss function (e.g. cross-entropy for ML) to

obtain  from some data
■ Numerical optimization is outside the scope of this course
• But it's useful to have some knowledge of the optimizers

θ
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Minimizing the loss function
■ So far we saw tf.optimizers.SGD
• Basic gradient descent algorithm, single learning rate.

• Stochastic gradient descent: use gradient computed at each example, selected at
random

• Mini-batch gradient descent: updates after computing the total gradient from a
batch of randomly selected examples.

• Can include momentum (and you should use momentum, in general)

■ This is just an alias for the tf.keras.optimizers.SGD class
• We'll be using Keras explicitely from now on
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Minimizing the loss function:
■ Different parameters may best be changed at different rates
•  tf.keras.optimizers.Adagrad

• Keeps sum of past (squared) gradients for all parameters

• Divides learning rate of each parameter by this sum

• Parameters with small gradients will have larger learning rates, and vice-versa

• Since Adagrad sums previous gradients, learning rates will shrink

• (good for convex problems)
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OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function:
■ Some parameters may be left with too large or too small gradients
•  tf.keras.optimizers.RMSProp

• Keeps moving root of the mean of the squared gradients (RMS)

• Divides gradient by this moving RMS

• Updates will tend to be similar for all parameters.

• Since it uses a moving average, learning rates don't shrink

• Good for non-convex problems, and often used in recurrent neural networks

• Most famous unpublished optimizer



46

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function
■  tf.keras.optimizers.Adam
• Adaptive Moment Estimation (Adam)

• Momentum and different learning rates using an exponentially decaying average
over the previous gradients

■  tf.keras.optimizers.AdamW
• Adaptive Moment Estimation (Adam)

• Similar to Adam but with Weight Decay, generalizes better than Adam

• Fast to learn but may have convergence problems

How to choose?
■ There is no solid theoretical foundation for this
■ So you must choose empirically
• Which is just a fancy way of saying try and see what works...
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Choosing the best learning rate
■ Optimizers can have other parameters, but all have a learning rate
■ Too high a learning rate can lead to convergence problems
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Learning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning Rate

■ However, if learning rate is too small training can take too long
■ Try to make it as high as you can while still converging to low error
• (you can experiment with a subset of your training set, even if overfitting)
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Batch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch Normalization

Normalizing (standardizing) activations
■ Compute running averages and standard deviations during training
• And standardize the inputs to each layer

■ Just like we do for the inputs to the network, do for hidden layers
too

• Makes learning easier by preventing extreme values

• Eliminates shifts in mean and variance during training

• Reduces the need for each layer to adapt to the changes in the previous one

■ This can be done easily in Keras
• The mean, standard deviation and rescaling can all be part of backpropagation

• AutoDiff takes care of the derivatives

• So we can add batch normalization as an additional layer
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The goal of (supervised) learning is prediction
■ And we want to predict outside of what we know
Overfitting
■ The problem of adjusting too much to training data
• and losing generalization

■ Two ways of solving this:
• Select the right model: model selection
• Adjust training: regularization



52

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

How to check for overfitting
■ We need to evaluate performance outside the training set
• Test set: we need to keep this for final evaluation of error rate

■ We can use a validation set
■ Or we can use cross-validation
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How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1
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How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1
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How to check for overfitting
■ Option 1: Cross-validation on training set, test
• Good when data is scarcer
• Better estimate of true error
• More computationally demanding

■ Option 2: train, validation for preventing overfitting, test
• Good when we have lots of data (which is generally the case for DL)

■ Cross-validation is widely used outside deep learning
■ With deep learning training and validation is more common
• Deep networks take some time to train
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Estimating the true error
■ True error: the expected error over all possible data
• We cannot measure this, since we would need all possible data

■ Must be estimated with a test set, outside the training set
■ This cannot be the validation set if the validation set was used to

optimize hyperparameters
• We choose the combination with the smallest validation error, this makes the

estimate biased.

■ Solution: reserve a test set for final estimate of true error
• This set should not be used for any choice or optimization
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Model Selection
■ If the model adapts too much to the data, the training error may be

low but the true error high
• Example: Auto MPG problem, 100-50-10-1 network.
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OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ One way of solving this problem is to use a simpler model

(assuming it can fit the data)
• Example: Auto MPG problem, 30-10-1 network.
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OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ If the model is too simple, then error may become high
• (Underfitting)
• Example: Auto MPG problem, 3-2-1 network.
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Regularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANN
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Penalizing parameter size
■ To reduce variance, we can force parameters to remain small by

adding a penalty to the objective (cost) function:

■ Where  is the weight of the regularization
• Note: in ANN, generally only the input weights at each neuron are penalized and

not the bias weights.

■ The norm function  usually takes these forms:

• L  Regularization (ridge regression): penalize 
• L  Regularization: penalize 

(θ; X, y) = J(θ; X, y) + αΩ(θ)J
~

α

Ω(θ)
2 ||θ||2

1 | |∑i θi
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L  Regularization is weight decay2

■ If we penalize , the gradient becomes:

■ This means the update rule for the weight becomes

■ We decrease the magnitude of  to  per update
■ This causes weights that do not contribute to reducing the cost

function to shrink

w2

∇ (θ; X, y) = ∇J(θ; X, y) + 2αwJ
~

w ← w − ϵ2αw − ϵ∇J(θ; X, y)

w (1 − ϵ2α)
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L  Regularization1

■ If we penalize , the gradient becomes:

■ This penalizes parameters by a constant value, leading to a sparse
solution

• Some weights will have an optimal value of 0

|w|
∇ (θ; X, y) = ∇J(θ; X, y) + α sign(w)J

~

L  vs L  Regularization1 2

■ L  minimizes number of non-zero weights
■ L  minimizes overall weight magnitude

1

2
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Dataset augmentation
■ More data is generally better, although not always readily available
■ But sometimes we can make more data
■ E.g. Image classification:
• Translate images. Rotate or flip, if appropriate (not for character recognition)

Wang et al, 2019, "A survey of face data augmentation".
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Dataset augmentation by noise injection
■ Noise injection is an (implicit) form of dataset augmentation
• Add (carefully) noise to inputs, or even to some hidden layers

■ Noise can also be applied to the weights
■ Or even the output
• There may be errors in labelling

• Or for label smoothing: use  and  instead of 0 and 1 for target

• This prevents pushing softmax or sigmoid to infinity

ϵ
(k−1)

1 − ϵ
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Early stopping
■ Use validation to stop at best point
• Constrains weights to be closer to starting distribution



67

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Bagging
■ Training a set of models on different subsets of the data
■ use the average response (or majority vote)
■ Improves performance, as it reduces variance without affecting

bias, and ANN can have high variance
■ However, it can be costly to train and use many deep models.
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Dropout
■ "Turns off" random input and hidden neurons in each minibatch
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RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Dropout
■ Dropout does model averaging implicitely
■ Turning off neurons at random trains an ensemble of many different

networks
■ After training, weights are scaled by the probability of being "on"
• (same expected activation value)

■ Keras automatically adjust for this when we use a Dropout layer
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ The vanishing gradients problem, ReLU
■ Activations for hidden and output layers
■ Loss functions
■ Optimizers, learning rate, batch normalization
■ Model selection and Regularization
Further reading:
■ Goodfellow et.al, Deep learning, Chaps 5-7 and 11, Sects 8.4; 8.7.1
■ Tensorflow, activation functions:
• https://www.tensorflow.org/api_guides/python/nn#Activation_Functions




