llecnicasydell/AfparalBiclogia

4 - Convolutional Networks

André Lamurias

ConvelutionalfNetWwe ks

Summary
m What is convolution

m Convolution layers and neural networks (CNNSs)

m Pooling

m Classification with convolutional networks

m CNN tutorial: Fashion MNIST classification with CNN and Keras

ConvelutionaliNetweorks
I —

Convolution

Convelltion
[

Definition:
m Integral of the product of two functions, one of which was shifted
and inverted

(f * 9)(t / fr t—TdT—/ f(t—7)g

m Used in many applications, such as probabilities or linear time-
Invariant systems

Convelltion

9= [" Fm)g(t — r)dr = / " f(t - n)g(r)dr

m Intuition: Suppose a LTIS with this response:

- Response
0.6
04
0.2
0.0 \//_/,\c—-:*

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Convelltion

9= [" Fm)g(t — r)dr = / " f(t - n)g(r)dr

m Subject to this impulse

—— Impulse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

m How do we compute the output?

Convelltion

o= [" Fm)g(t — r)dr = / " f(t - n)g(r)dr

m First we take the symmetric of the response:

-Response

0.6

04

0.2

0.0 — e /-\

—2.00 -1.75 -1.50 -1.25 -1.00 -0.75 —0.50 -0.25 0.00

m How do we compute the response?

Convellition

9= [" Fm)g(t — r)dr = / " f(t - n)g(r)dr

m Now we integrate product at different time shifts

1.0
—— Impulse
0.8 —— -Response
0.6 ‘ ‘
0.4
0.2
0.0
-0.2
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1.0
—— OQutput
0.8

0.4
0.2
0n -3 —
N N
! ! 0.75 1.00 diato) 1.50

1.75 2.00

Convellition
[

For finding patterns
m Suppose we have this signal and want to detect the spike pattern

1.0

0.8
0.6
0.4

. A AUAVA | N BVAVAWY

VAV A VAR

0.00 0. 50 0.75 1.00 1.25 1.50 1.75 2.00

Convellition
[

For finding patterns
m We create this "detector" function (inverted)

10 Detector

0.8

0.6

0.4

0.2

0.0 i
-2.00 -1.75 ~150 -125 -1.00 -0.75 -0.50 -0.25 0.00

Convellition

o= [" Fm)g(t — r)dr = / " f(t - n)g(r)dr

m We detect the pattern integrating at different time shifts

—— Impulse
—— Detector
1.0
) “/\ M A A
0.0 v/\ /-\V/\ N P /\ /\v/
\/ N L7 N NS
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

—— Detection Signal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10

Convelution

Motivation:
m Use a kernel (w) to modify the input (x) and create a new function
(s) using weighted values "around" the input

e E.g. a weighted average of most recent values in a time series, local features of an

image, etc,
o0

s(t) = (x*xw)(t) = Y z(t)w(t —m)

m=—00
m In practice, for CNN:

 The input is a finite, discrete set of values (assumed 0 everywhere else)
* The kernel is a finite set of parameters that will be learned

* The output will be tensor, typically of the same size and shape as the input

11

Convelution

Two-dimensional convolution

m We often use convolution in more than one dimension (e.g. for
images)

S(i,5) = I+ K)(3,5) = Y > _I(m,n)K(i —m,j—n)

m Since convolution is commutative, we often use:

SG3) = [+ K)(6,5) = 3. 3 16 — m, j— n)K(m, n)

e |.e. we index the kernel and the image around (i,j)

12

Conveluilenel NEWVeE

CNN

CNN

Motivation for convolutional networks

m Sparse interactions (sparse connectivity or sparse weights)
e Since the kernel is smaller than the input, we need fewer parameters

m Shared parameters

e Connections are sparse but the same parameters are used over all inputs
m Equivariance

e Convolutions are equivariant to some transformations

 |.e. applying the transformation (e.g. translation) to the input is the same as
applying it to the convolution

14

CNN

Motivation: sparse interactions
m Convolutional networks have fewer connections than MLP

Goodfellow, Bengio, Courville, Deep Learning 2016

15

@NIN

Motivation: sparse interactions
m Convolutional networks have fewer connections than MLP

m But deeper neurons can still have a large receptive field in the input

6560

Goodfellow, Bengio, Courville, Deep Learning 2016

16

CININ

Motivation: parameter sharing
m The same parameter is used for many inputs

* E.g. edge detection by subtracting pixel on the left

Goodfellow, Bengio, Courville, Deep Learning 2016

17

CININ

Motivation: equivariance

= Moving the input image is equivalent to moving the output of the
convolution filter (the feature map)

Goodfellow, Bengio, Courville, Deep Learning 2016

18

GNIN

Receptive field and multiple filters
m Visual cortex neurons respond to a small receptive field in retina

* Neurons in convolution layers have this property

m Multiple convolution filters are generally applied

/ 1,1,1,/0/0
0::0 1xl 1><0 1 0 4
@§>ooooo 0,0y 1111
0|0(1|1]|0
0(1(1|0]|0
/ Image Convolved
- Feature

Images: Aphex34, CC-SA; UFLDL tutorial, Stanford (Ng et. al.)

19

CININ

I
Receptive field and multiple filters
m Multiple convolution filters are generally applied

* \We generally represent convolution layers as 3D volumes of neurons (in image
processing), stacking the different convolution filters

depth

(SETEE height

OOOO 9

Image: CS231n Stanford (Fei-Fei Li et. al.)

20

CININ

Nonlinear tranformation

m A convolution is a linear transformation, so in CNN the convolution
filter generally feeds into a nonlinear response (usually ReLU)

4

@E>O O00Q0Q ;: ______ A

0.0 %
Z
I"
-
-05 —
B
o -15
-6 -4 -2

21

CININ

Hyperparameters of a convolution layer
m Depth: the number of filters being learned

m Stride: How the receptive field "jumps"

m Padding: to prevent output from shrinking

0 0 0 Kernel Matrix 0 0 0 0 Kernel Matrix
100 | 97 | 96 0 -1 0 320 100 | 97 | 96 0 -1 0 -
103 | 101 | 102 -1 5 -1 103 | 101 | 102 | 1r -1 5 -1
104 | 102 | 100 0 -1 0 0 [101| 98 | 104 | 102 | 100 | » 0 -1 0
0 | 99 | 101 | 106 | 104 | 99 0 | 99 | 101 | 106 | 104 | 99 | -
0 | 104 | 104 | 104 | 100 | 98 0 | 104 | 104 | 104 | 100 | 98 |1
Image Matrix 0x0+0+—-1+0x*0 Qutput Matrix Image Matrix 0x0+0+-1+0x*0 Qutput Matrix
40+ —14+105+5+102*—1 +0*—14+105%5+102+—1
+0+0+103*-14+99+0 =320 +0+0+4103*-14+99+0 =320
Convolution with horizontal and Convolution with horizontal and
vertical strides =1 vertical strides =2

Image: Machine learning guru, http://machinelearninguru.com

GNIN

Example: convolution network
m Stanford (CS231, Fei-Fei Li et. al.)

* http://cs231n.github.io/convolutional-networks/

RELU RELU ELU RELU RELU RELU
CONV CONV CONVlCONV CONVlCONVi

}

|

T A ERTYR BN —

K
=
=
-
§
=
-

NE. R RN EEN

23

Conveluiienel nNEWVeE
T

Pooling

24

Roeoeling

Typical architecture of a convolutional layer

m Convolutions: several convolutions in parallel, generating a set of
linear activations

m Nonlinear activation: applied to each linear output (typically ReLU)
 (detector stage)

m Pooling: aggregates the outputs in a single output for each region

25

I
Pooling: aggregating outputs
m Example: max pooling

Single depth slice
-

Image: Aphex34, CC-SA

Y

26

Roeoeling

Pooling: aggregating outputs
m Typical pooling functions:

e Max pooling, average pooling, L2 norm pooling: 4/ Z :c,f

m Pooling makes model nearly invariant to small shifts in input
Pooling Stride

= We may want to regulate the overlap of pooling regions

m If the stride is equal to the size of the regions, then there is no
overlap

m Stride also reduces the dimension

* (pooling of stride 1, with padding, preserves dimension)

27

Clessiczien Wiy CNIN

For classification, conv layers combined with MLP
m Fully connected layers at the end to predict class for example

m Forces fixed-sized input and output not spacial

3]’ M 33J .\‘

192 128 2048

35
3
27 128
3 13
3
! \;
3

SA\E

i\ Lol = qu [

1 - 192 192 128 I"-I"Iax
istrid Max 128 Max pooling
Uof 4 pooling pooling

3 48

EN| h i e

31 AN 13 dense | |dense

1000

2048 2048

Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2012

28

Convelltionalinetweorks

Tutorial: Keras Sequential API

29

NEES SEOUEMIEL

I
Building a model with Keras
m Start by importing classes:

from tensorflow.keras.optimizers import SGD
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import BatchNormalization,Conv2D,MaxPooling2D,

from tensorflow.keras.layers import Activation, Flatten, Dropout, Dense

30

Building a model with Keras
m Create a Sequential model and add layers

model = Sequential ()
model.add (Conv2D (32, (3, 3), padding="same'", input shape=(28,28,1)))
model .add (Activation("relu'))

model.add (MaxPooling2D (pool size=(2, 2)))
model.add (Conv2D (64, (3, 3), padding='"same'"))

model .add (Flatten())

model .add (Dense (512))

model.add (Activation("relu"))
model .add (BatchNormalization())
model . add (Dropout (0.5))

model .add (Dense (10))

model.add (Activation("softmax"))

31

Sequential

Side note:
m (Current consensus, but some opinions may vary)

m Use batch normalization after activation so that input of following
layer is standardized

m Use dropout after all batch normalizations

e Otherwise you may need to compensate the rescaling of dropout when shifting to
prediction mode

m Dropout may have some benefits in convolution layers but in that
case it is not the same as dropout in dense layers

32

NEES SECUENIE
I

Compiling the model

opt = SGD (1r=INIT LR, momentum=0.9, decay=INIT LR / NUM EPOCHS)

model = create model ()
model.compile (loss="categorical crossentropy", optimizer=opt,

metrics=["accuracy"])

m Now we can train the model and save the weights.

history = model.fit(trainX, trainY, validation data=(testX, testY),
batch size=BS, epochs=NUM EPOCHS)
model.save weights('fashion model.weights.h5")

m The saved weights can be loaded with

e model.load weights(file name)

NEES SECUENIE
I

Monitoring
m The fit method returns a history object (parameters, model, etc)

history = model.fit(trainX, trainY, validation data=(testX, testY),
batch size=BS, epochs=NUM EPOCHS)

In: history.history

Out:
{'acc': [0.7736167, ...],
'loss': [0.6834171069622039, ...],
'val acc': [0.1974, ...],
'val loss': [2.1077217151641845, ...]1}

34

Convelltionalinetweorks

Tutorial: Regression and CNN

35

Nutenial

Regression with the Auto MPG Data Set
m Predict the fuel consumption of cars

Auto MPG Data Set, available at the UCI repository

m Some pointers:

Shuffle the data before splitting into training and validation sets

Target: first column, MPG (miles per gallon)

Standardize features and target value

Standardizing target centers the output and minimizes numerical problems
Only 392 examples. Use 300 for training and 92 for validation.

Linear output for the last neuron (only one neuron)

Mean squared error loss function for training

Try different activations and learning parameters (rate, momentum)

36

Regression with the Auto MPG Data Set
m Load, standardize, use 300 for train and rest for validation:

data = np.loadtxt ('AutoMPG. tsv',6 skiprows=1)
np.random.shuffle (data)

means = np.mean (data,axis=0)

stds = np.std(data,axis=0)

data = (data-means)/stds

valid Y = data[300:,0]
valid X = data[300:,1:]
Y data[:300,0]

data[:300,1:]

Nutenial

Fashion MNIST

https://github.com/zalandoresearch/fashion-mnist

i e——= @ __c=mm

Eiaele—c—] 4 (@ -

v =@ S .
il =GO =
safE@ 0 E——

W' = G

Sl —

N e i\l —
w4 (e rona
- e =@ _ e=)
'_l.lnﬂul“..' ——
;i _ﬂﬂﬁln_Hmi
— = l -
CN _ﬁ“ﬂﬂnmm =G
ﬂ.ﬂl"‘"..v | ——
'.._,_. = ﬂ"ﬂlmn_ = —
51— > | CRA ==
) (e @ =rum
g = e E -
! (H—=— 'l
(mwmii=—e—c=@;_ T - .
Gagm ﬁurl-“.m.:
ﬂ”“ﬂ“. m._lﬂ.ll
@c, ?l““_____i.

:llﬂlﬁﬂll.
(7 e e———— = @
ECy(Ne—e—cya_ @@

O — — — [Tk T

m Grayscale images, 28x28, 10 classes of clothing

38

Nutenial

Import the dataset and set up the data

from tensorflow import keras

((trainX, trainY), (testX, testY)) = keras.datasets.fashion mnist.load data()
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

testX = testX.reshape((testX.shape[0], 28, 28, 1))

trainX = trainX.astype('float32") / 255.0

testX = testX.astype("float32") / 255.0

one-hot encode the training and testing labels

trainY = keras.utils.to_categorical (trainY, 10)

testY = keras.utils.to_categorical (testY, 10)

m One-hot encoding for encoding multi-class.

[[0O. O. O. 0. O. 1. O. .
[0. 0. 0. O. O. O. O. O. 1.

o

o
o o
—

m Softmax will output vectors with sum of 1 and with probabilities of
belonging to each class

39

Nutenial

Model for this exercise:
m First stack:

e Two convolution layers with 3 x 3 kernel, padding "same", 32 filters, ReLU
activation and batch normalization

e Max pooling of size 2 X 2 and same stride

e Optional: you can try adding dropout layer with 25% dropout probability (but results
seem to be worse)

m Second stack: Identical to first but with 64 filters

m Dense layer of 512 neurons with ReLLU activation, batch
normalization and dropout of 50%

m Softmax layer with 10 neurons.
m Use the SGD optimizer and about 25 epochs, save after fitting

m_Optional: Experiment changing the model and optimizers
40

Conveluilenel eSS
I S—S——

Summary

41

Convellutionalinetwaol

Summary
m Convolutions

m Convolution layers
m Classification with convolutional networks
m CNN tutorial using the Keras sequential API

Further reading:
m Goodfellow et.al, Deep learning, Chapter 9

m Tensorflow Keras APl

e https://www.tensorflow.org/guide/keras

42

