Técnicas de lA para Biologia

5 - Autoencoders

André Lamúrias

Autoencoders

Summary

- What are Autoencoders?
- Different restrictions on encoding
- Undercompleteness
- Regularization
- Sparsity
- Noise reconstruction
- Applications

Autoencoders

What are autoencoders?

Network trained to output the input (unsupervised)

■ In the hidden layers, one layer learns a **code** describing the input

Network trained to output the input (unsupervised)

■ The encoder maps from input to latent space

Network trained to output the input (unsupervised)

■ The decoder maps from **latent space** back to input space

Network trained to output the input (unsupervised)

- lacksquare Encoder, h=f(x), and decoder, x=g(h)
- No need for labels, since the target is the input
- Why learn x = g(f(x))?

Cat images: Joaquim Alves Gaspar CC-SA

Network trained to output the input (unsupervised)

- lacksquare Encoder, h=f(x), and decoder, x=g(h)
- Why learn x = g(f(x))?
- Latent representation can have advantages
- Lower dimension
- Capture structure in the data
- Data generation

Network trained to output the input (unsupervised)

- lacksquare Encoder, h=f(x), and decoder, x=g(h)
- Autoencoders are (usually) feedfoward networks
- Can be trained with the same algorithms, such as backpropagation
- \blacksquare But since the target is x, they are unsupervised learners
- Need some "bottleneck" to force a useful representation
- Otherwise just copies values

Autoencoders

Different types of autoencoders

Undercomplete Autoencoders

Autoencoder is undercomplete if h is smaller than x

- Forces the network to learn reduced representation of input
- Trained by minimizing a loss function

$$L(x,g(f(x)))$$
 that penalizes the difference between x and $g(f(x))$

- If linear it is similar to PCA (without orthogonality constraint)
- With nonlinear transformations, an undercomplete autoencoder can learn more powerful representations
- However, we cannot overdo it
- With too much power, autoencoder can just index each training example and learn nothing useful:

$$f(x_i) = i, \quad g(i) = x_i$$

Undercomplete Autoencoders

Autoencoder is undercomplete if h is smaller than x

Mitchell's autoencoder, hidden layer of 3 neurons

Manifold

- A set of points such that the neighbourhood of each is homeomorphic to a euclidean space
 - Example: the surface of a sphere

Data may cover a lower dimension manifold of the space

Learn lower dimension embeddings of data manifold

Undercomplete Autoencoders

- Nonlinearity makes dimensionality reduction adapt to manifold
- PCA vs autoencoder 6,4,2,4,6, UCI banknote dataset (4 features)

Manifold learning with autoencoders

- This works because we force the network in two opposite ways:
- We demand the ability to reconstruct the input
- But we also constrain how the network can encode the examples
- Undercompleteness is just one way of doing this

Beware of overfitting.

- If the autoencoder is sufficiently powerful, it can reconstruct the training data accurately but lose generalization power
- In the extreme, all information about reconstructing the training set may be in the weights and the latent representation becomes useless

An overcomplete autoencoder has h larger than x

lacktriangle This, by itself, is a bad idea as h will not represent anything useful

An overcomplete autoencoder has h larger than x

- But we can restrict h with regularization
- lacksquare This way the autoencoder also learns how restricted h should be

Sparse Autoencoder

- Force h to have few activations
- lacktriangle Example: we want the probability of h_i firing

$$\hat{p}_i = rac{1}{m} \sum_{j=1}^m h_i(x_j)$$

to be equal to p (the sparseness parameter)

Sparse Autoencoder

- Include in the loss function a penalization term
- Use the Kullback-Leibler divergence between Bernoulli variables as a regularization penalty

$$L(x,g(f(x))) + \lambda \sum_i \left(p\lograc{p}{\hat{p}_i} + (1-p)\lograc{1-p}{1-\hat{p}_i}
ight)$$

 Other options include L1 regularization applied to the activation of the neurons, L2, etc.

Sparse Autoencoder

Sparse autoencoders make neurons specialize

Image: Andrew Ng

- Trained on 10x10 images
- lacksquare 100 neurons on h
- Images (norm-bounded) that maximize activation

Sparse Autoencoder

- Sparse autoencoders trained on MNIST, different sparsity penalties
- (25 neurons in filter, images correspond to highest activation)

Niang et. al, Empirical Analysis of Different Sparse Penalties... IJCNN 2015,

Denoising Autoencoders

- We can force h to be learned with noisy inputs
- Output the original x from corrupted $ilde{x}$: $L(x,g(f(ilde{x})))$

Image: Adil Baaj, Keras Tutorial on DAE

Denoising Autoencoders

- lacktriangle We can force h to be learned with noisy inputs
- Output the original x from corrupted $ilde{x}$: $L(x,g(f(ilde{x})))$
- lacktriangle This forces the autoencoder to remove the noise by learning the underlying distribution of x
- Algorithm:
- Sample x_i from ${\cal X}$
- Apply corruption $C(\tilde{x_i} \mid x_i)$
- Train with (x, \tilde{x})

Stochastic Autoencoders

- We can also use autoencoders to learn probabilities
- Just like with other ANN (e.g. softmax classifier)
- lacksquare The decoder is modelling a conditional probability $p_{decoder}(x\mid h)$
- ullet where h is given by the encoder part of the autoencoder
- The decoder output units can be chosen as before:
- Linear for estimating the mean of Gaussian distributions
- Sigmoid for Bernoulli (binary)
- Softmax for discrete categories
- We can think of encoder and decoder as modelling conditional probabilities

$$p_{encoder}(h \mid x) \qquad p_{decoder}(x \mid h)$$

Autoencoders

Generating Data

Can we use autoencoders to generate new examples?

Cat images: Joaquim Alves Gaspar CC-SA

Autoencoders create a latent representation from the data

And then decode to recreate the data from this representation

Cat images: Joaquim Alves Gaspar CC-SA

Can we use the decoder to generate new examples?

Discriminative vs Generative

- lacksquare A discriminative model tries to approximate a function $p(y \mid x)$
- E.g. Logistic regression or softmax ANN predict the probability of each class given the features
- lacksquare A generative model approximates p(x,y) and then finds $p(y\mid x)$: $p(x,y)=p(y\mid x)p(x)$
- ullet This is generative because, knowing p(x,y), we can sample from the distribution

With autoencoders

• We decode from h, so we need to find its distribution in order to generate examples from $p(h,y)=p(y\mid h)p(h)$

Intuition: we need to sample the right part of the latent space

Cat images: Joaquim Alves Gaspar CC-SA

Intuition: if outside the right region, the result is garbage

Cat images: Joaquim Alves Gaspar CC-SA

Generative adversarial networks

- Fix the latent space with some distribution
- The result will be garbage because net not trained

Generative adversarial networks

Train a network to distinguish the real examples from fakes

Generative adversarial networks

- One network creates examples from given distribution
- The other distinguishes real from fake
- Train both, alternating, so each becomes increasingly better

Ian Goodfellow

Generating Data

Generative adversarial networks

- One network creates examples from given distribution
- The other distinguishes real from fake
- Train both, alternating, so each becomes increasingly better
- As a result, the generator learns to map our fixed initial distribution to the space of our target examples.

Generating Data

- Can we use autoencoders to generate new examples?
- Yes, if we know the "shape" of the latent space

Variational Autoencoders

- Train the autoencoder to encode into a given distribution
- E.g. mixture of independent Gaussians
- This way we learn the distribution for generating examples of each type

Variational Autoencoders

- How do we backpropagate through random sampling?
- Reparametrize: z is deterministic apart from a normally distributed error

Image: Jeremy Jordan, Variational autoencoders.

Variational Autoencoders

- VAE can learn to disentangle meaningful attributes
- We can force the independence of the latent variables

Image: Bouchacourt et. al., Multi-level variational autoencoder, 2018

Autoencoders

Convolutional Autoencoders

Convolutional Autoencoders

Use convolutions and upsampling to reconstruct

Latent space is narrow, need to restore original dimensions

Barna Pásztor, Aligning hand-written digits with Convolutional Autoencoders

Convolutional Autoencoders

Upsample followed by convolution (in 2D)

```
from tensorflow.keras.layers import UpSampling1D,UpSampling2D
UpSampling1D(size=2)
UpSampling2D(size=(2, 2), data_format=None, interpolation='nearest')
```


Shi et. al., Is the deconvolution layer the same as a convolutional layer?

Example: deep fakes

- Train the same encoder on different sets of inputs
- But for each set reconstruct with a specific decoder
- With this we can "translate" between sets

Example: deep fakes

Gaurav Oberoi, Exploring DeepFakes, https://goberoi.com/exploring-deepfakes-20c9947c22d9

Example: deep fakes

- Train with images from videos
- Process video:
- Input Fallon to encoder
- Output Oliver using Oliver decoder

Example: Text-to-image

Stable Diffusion, DALL-e

Amazon Machine Learning Blog, https://aws.amazon.com/blogs/machine-learning/create-high-quality-images-with-stable-diffusion-models-and-deploy-them-cost-efficiently-with-amazon-sagemaker/

Example: Text-to-image

Based on U-Net model architecture: CNN for image segmentation

Edge AI and vision, https://www.edge-ai-vision.com/2023/01/from-dall%C2%B7e-to-stable-diffusion-how-do-text-to-image-generation-models-work/

Autoencoders

Summary

Autoencoders

Summary

- Autoencoders: learn the input in the output
- Unsupervised learning
- Using restrictions (dimension, regularization)
- Or reconstruction (from corrupted inputs)
- Convolutional Autoencoders
- Recent applications

Further reading:

Goodfellow et.al, Deep learning, Chapter 14