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AlteenNcOdERS

Summary
= What are Autoencoders?
m Different restrictions on encoding

e Undercompleteness
* Regularization

* Sparsity

* Noise reconstruction

m Applications
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What are autoencoders?




VWhattareralteencodenrsy

Network trained to output the input (unsupervised)
m In the hidden layers, one layer learns a code describing the input

Cat images: Joaquim Alves Gaspar CC-SA




VWhattareralteencodenrsy

Network trained to output the input (unsupervised)
m The encoder maps from input to latent space

[0.3,0.8]

Cat images: Joaquim Alves Gaspar CC-SA




VWhattareralteencodenrsy

Network trained to output the input (unsupervised)
m The decoder maps from latent space back to input space

[0.3,0.8]

Cat images: Joaquim Alves Gaspar CC-SA




VWhattareralteencodenrsy

Network trained to output the input (unsupervised)
= Encoder, h = f(«), and decoder, x = g(h)

m No need for labels, since the target is the input
s Whylearn x = g (f (x))?

Cat images: Joaquim Alves Gaspar CC-SA




\Whattarelalitoe ncodensy

Network trained to output the input (unsupervised)
= Encoder, h = f(«), and decoder, x = g(h)

s Whyleammx = g(f(z))?

m Latent representation can have advantages

* Lower dimension
e Capture structure in the data
e Data generation



\Whattarelalitoe ncodensy

Network trained to output the input (unsupervised)
= Encoder, h = f(«), and decoder, x = g(h)

m Autoencoders are (usually) feedfoward networks
e Can be trained with the same algorithms, such as backpropagation

m But since the target is x, they are unsupervised learners

m Need some "bottleneck" to force a useful representation

e Otherwise just copies values
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Different types of autoencoders




UndercompletefAUteENCOUELS

Autoencoder is undercomplete if i is smaller than x
m Forces the network to learn reduced representation of input

m Trained by minimizing a loss function

L(z,g(f(x)))

that penalizes the difference between x and g( f(x))
m If linear it is similar to PCA (without orthogonality constraint)

m With nonlinear transformations, an undercomplete autoencoder can
learn more powerful representations

m However, we cannot overdo it

* With too much power, autoencoder can just index each training example and learn
nothing useful:

flz:) =14, g(i) ==

10



UndercompletelAUteeENCOUERS

Autoencoder is undercomplete if i is smaller than x
m Mitchell's autoencoder, hidden layer of 3 neurons

a
R

11



Manifeldil¥Feanning

Manifold

m A set of points such that the neighbourhood of each is
homeomorphic to a euclidean space

m Example: the surface of a
sphere

6000

80008000

12



Manifeldil¥Fearning

m Data may cover a lower dimension manifold of the space
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m Nonlinearity makes dimensionality reduction adapt to manifold

 PCA vs autoencoder 6,4,2,4,6, UCI banknote dataset (4 features

)
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Manifeldifeanning

Manifold learning with autoencoders
m This works because we force the network in two opposite ways:

* \WWe demand the ability to reconstruct the input

e But we also constrain how the network can encode the examples
m Undercompleteness is just one way of doing this

Beware of overfitting.

m If the autoencoder is sufficiently powerful, it can reconstruct the
training data accurately but lose generalization power

= In the extreme, all information about reconstructing the training set
may be in the weights and the latent representation becomes

useless

16



Regula

An overcomplete autoencoder has h larger than x
m This, by itself, is a bad idea as h will not represent anything useful

Cat images: Joaquim Alves Gaspar CC-SA
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N

An overcomplete autoencoder has h larger than x
m But we can restrict h with regularization

= This way the autoencoder also learns how restricted A should be

18



Regularized

Sparse Autoencoder
m Force h to have few activations

m Example: we want the probability of h; firing

1 m
A_:_E h .
pz mj:1 ’l(w])

to be equal to p (the sparseness parameter)

19



aqulanizedlAliteencoders

Sparse Autoencoder
m Include in the loss function a penalization term

m Use the Kullback-Leibler divergence between Bernoulli variables as
a regularization penalty

L(a,g(f@) + A3 (plog £ + (1~ p)1og {2 )

i —

m Other options include L1 regularization applied to the activation of
the neurons, L2, etc.

20



Regulanized

Sparse Autoencoder
m Sparse autoencoders make neurons specialize

A2 PP RS «N™ = Trained on 10x10 images
AN AE AR AR = 100neuronsonh
'alfFSl NN T Images (norm-bounded)

that maximize activation

Image: Andrew Ng

21



RELUEI A0 AUIENEORERS

Sparse Autoencoder
m Sparse autoencoders trained on MNIST, different sparsity penalties

m (25 neurons in filter, images correspond to highest activation)

{a) No penalty (b} L1 norm penalty (c) L2 norm penalty (d) Student-t penalty {e) KL-divergence penalty

Niang et. al, Empirical Analysis of Different Sparse Penalties... [JCNN 2015,

22



Denoising Autoencoders

m We can force h to be learned with noisy inputs

e Output the original « from corrupted &: L(z, g( f(Z)))

—| Encoder

La

Noisiy input

Compressed

Decoder

- 2

representation

|

The feature we want to
extract from the image

Denoised image

Image: Adil Baaj, Keras Tutorial on DAE
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egllanizENAUITOENCOTELS

Denoising Autoencoders
m We can force h to be learned with noisy inputs
e Output the original  from corrupted &: L(z, g( f(Z)))

m This forces the autoencoder to remove the noise by learning the
underlying distribution of x
m Algorithm:

e Sample x; from X
* Apply corruption C(Z; | x;)
e Train with (x, )

24



AlteencCedERS

Steochastic

m We can also use autoencoders to learn probabilities
e Just like with other ANN (e.g. softmax classifier)
= The decoder is modelling a conditional probability Pgecoder (€ | h)

» where h is given by the encoder part of the autoencoder

m The decoder output units can be chosen as before:

e Linear for estimating the mean of Gaussian distributions
e Sigmoid for Bernoulli (binary)
e Softmax for discrete categories

m We can think of encoder and decoder as modelling conditional
probabilities

pencoder(h ‘ 33) Pdecoder (CE‘ | h)

25



Aliteoencoderns

Generating Data

26



Generatingiata

m Can we use autoencoders to generate new examples?

Cat images: Joaquim Alves Gaspar CC-SA
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Generatingiata

m Autoencoders create a latent representation from the data

[0.2,0.8]

Cat images: Joaquim Alves Gaspar CC-SA
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Generatingiata

m And then decode to recreate the data from this representation

[0.2,0.8]

Cat images: Joaquim Alves Gaspar CC-SA
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m Can we use the decoder to generate new examples?
Discriminative vs Generative
= Adiscriminative model tries to approximate a function p(y | )

e E.g. Logistic regression or softmax ANN predict the probability of each class given
the features

= A generative model approximates p(x, y) and then finds p(y | =):
p(z,y) = p(y | z)p(z)

e This is generative because, knowing p(x, y), we can sample from the distribution

With autoencoders

m We decode from h, so we need to find its distribution in order to
generate examples from p(h,y) = p(y | h)p(h)

30



Generatingiata

m Intuition: we need to sample the right part of the latent space

[0.2,0.8]

Cat images: Joaquim Alves Gaspar CC-SA
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Generatingiata

m Intuition: if outside the right region, the result is garbage

[F,181

Cat images: Joaquim Alves Gaspar CC-SA
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Generatingiata

Generative adversarial networks
m Fix the latent space with some distribution

* The result will be garbage because net not trained

Cat images: Joaquim Alves Gaspar CC-SA
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Generatingiata

Generative adversarial networks
m Train a network to distinguish the real examples from fakes

34



Generative adversarial networks
m One network creates examples from given distribution

m The other distinguishes real from fake

m Train both, alternating, so each becomes increasingly better

a4 ; >

2014

lan Goodfellow
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Generative adversarial networks
m One network creates examples from given distribution

m The other distinguishes real from fake
m Train both, alternating, so each becomes increasingly better

m As a result, the generator learns to map our fixed initial distribution
to the space of our target examples.

36



m Can we use autoencoders to generate new examples?

* Yes, if we know the "shape" of the latent space

Variational Autoencoders

m Train the autoencoder to encode into a given distribution

e E.g. mixture of independent Gaussians

m This way we learn the distribution for generating examples of each
type

neural network neural network

encoder decoder

loss = ||x-%]|* + KL ,N(O,)] = |[x-d() || + KLI ,N(©O,1)] 37



\VeliElehel /AVENEo0ER

I
= How do we backpropagate through random sampling?

m Reparametrize: z is deterministic apart from a normally distributed
error

z=p+ocoe e~N(0,1)

decoder model decoder model

] I

‘ Deterministic nade
o~ parameterizatior zzﬂ‘l‘ﬂ@é’
. fandom node ° q(z|x) reparameterization 0
0 0 0 0 ° ~N(0,1)

encoder model encoder model

Image: Jeremy Jordan, Variational autoencoders.
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\VeliElehel /AVENEo0ER

m VAE can learn to disentangle meaningful attributes

* We can force the independence of the latent variables
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Image: Bouchacourt et. al., Multi-level variational autoencoder, 2018
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Convolutional Autoencoders

40



ConvelltionalfAlitoencedens

Use convolutions and upsampling to reconstruct
m Latent space is narrow, need to restore original dimensions

Input image Reconstructed image

Latent Space .-t
'~ . Representation e

Barna Pasztor, Aligning hand-written digits with Convolutional Autoencoders
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ConvelltionalfAlitoencedens

m Upsample followed by convolution (in 2D)

from tensorflow.keras.layers import UpSamplinglD,UpSampling2D
UpSamplinglD (size=2)
UpSampling2D (size=(2, 2), data_format=None, interpolation='nearest')

Shi et. al., Is the deconvolution layer the same as a convolutional layer?

42



Applications

Example: deep fakes
m Train the same encoder on different sets of inputs

m But for each set reconstruct with a specific decoder

m With this we can "translate" between sets

43



Applications

I
Example: deep fakes

[:

Encoding

Japooug

Gaurav Oberoi, Exploring DeepFakes, https://goberoi.com/exploring-deepfakes-20c9947c22d9
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I Applications

i
Example: deep fakes Origina
m Train with images from
videos

m Process video:

* Input Fallon to encoder

e Qutput Oliver using Oliver
decoder

Gaurav Oberoi, Exploring DeepFakes, https://goberoi.com/exploring-deepfakes-20c9947c22d9
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Applications

[
Example: Text-to-image
m Stable Diffusion, DALL-e

Token Image
f:'r;F;Lt:::} smbaddings tensor Generated
(77 X 768) (4X64X64) Image
Fainting of New
York "93“!" by Text Encoder Image Information Creator I{Eﬁeﬂf
Van Gogh (CLIPText) (UNet + Scheduler) s

Amazon Machine Learning Blog, https://aws.amazon.com/blogs/machine-learning/create-high-quality-images-with-stable-diffusion-models-and-
deploy-them-cost-efficiently-with-amazon-sagemaker/
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Applications

I
Example: Text-to-image
m Based on U-Net model architecture: CNN for image segmentation

Edge Al and vision, https://www.edge-ai-vision.com/2023/01/from-dall%C2%B7e-to-stable-diffusion-how-do-text-to-image-generation-models-work/
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Alitoencoders

Summary

48



Summary
m Autoencoders: learn the input in the output

e Unsupervised learning
e Using restrictions (dimension, regularization)

e Or reconstruction (from corrupted inputs)

m Convolutional Autoencoders

m Recent applications

Further reading:

m Goodfellow et.al, Deep learning, Chapter 14
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