11 — Natural Language
Processing

André Lamurias

Natural Language Processing

NEeurEl Eanguage Processing

* Use of human languages by a computer

* Different from computer languages — ambiguous, variability,
Inconsistency, tone, etc

* Applications in machine translation, chatbots, information
retrieval

* Language models — probability distribution over sequences of
words

NeraltEenguase Processing

 Can use both symbolic and sub-symbolic Al
* Machine Learning can be used for NLP
* Challenges:

* Sequential data
* High dimensional data — many words

* One-hot encoding leads to very sparse data
* Most words are not used —vectors are mostly Os

NER comnecepits

* Tokens —smallest unit used in NLP
* Words, characters, or parts of words (subwords)

* Token -> Sentence -> Document —> Corpus

* Lemma/Stem -root of the word
* Remove suffixes and conjugation e.g. is->be, involves-> involve

* Part-of-speech: Class of the word
* E.g. noun, verb, adjective

* Tokenization — process of splitting text into token units
* Sentence splitting

* Stop words —very commonly used words
* The, that, is, a, ...

N-gram models

* Given h=%jts water is so transparentthat”
* How to calculate P(“the”|h)?

* Take a large corpus, count the number of times we see h and how often it
is followed by “the”

C'(its water is so transparent that the)

P(the|its water is so transparent that = _ ,
C'(its water is so transparent that)

 Whatifitis a new sentence?

* N-gram — sequence of N tokens
* N-gram models: predict next token given a sequence of tokens
* N=1 -> Unigrams/Bag-of-words: each token has a fixed probability

* N=2 -> Bi-gram model
* Given one word, predict the next one
* We can count how many times each token occurs after another token

* N=3 -> Tri-gram model
* Given two consecutive words, predict the next one
* We can count how many times each token occurs after those two words

s

N = 1 :|This|is|allsentence| unigrams: =

———__ sentence
— this is,

N = 2 :[Thislis|a|sentencel vigrams: isa
H‘Eentence
—

N = 3 :[This|is a|sentence|tigrams: M52
--___--_-_-_-_-_'_‘—-———___

Source: https://www.kdnuggets.com/2022/06/ngram-language-
modeling-natural-language-processing.html

* How to calculate joint probability of a sequence of words?
* Use chain rule of probability

P(X1..X,) = P(X1)P(X2| X1)P(X5|X1:2) . P(X | X1:n—1)

= || P(Xk|X10-1)
k=1

* We need the conditional probability of a token given its previous
tokens

* We approximate by using only n-1 previous words instead of all
previous words

BigramineeEls

* We approximate P(the | water is so transparent that) with
P(the|that)

* We ca generalize to other n-grams (N is the n-gram size)

P(Wn‘wlzn—l) %P(Wnlwn—NJrl:n—l)

Bi=gramimeeeEls

* Now we can compute the probability of a word sequence
P(wi,) =~ HP(wk\wk_l)
k=1

* To get these probabilities we count and normalize so that the sum
IS 1

* We augment sentences with a special start and end sentence
symbols

Example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

P(I|<s>) = p(sani<s>) =[N 00 =
P(</s>|Sam) = P(Samlam)z- P(do|TI) -

N=giramimee/Els

* |ssues:
* Longer n-grams — bigger
matrices
* Unseen n-grams: count is zero

* What if itappears on the test
set?

* Model smoothing — add fake
count
* Unknown words (out-of-
vocabulary — UNK token)

* Unidirectional, not very
generalizable

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
‘tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

EvaltlatinelEMIiS

e Extrinsic evaluation — next lecture

* Intrinsic evaluation: Perplexity (PP or PPL)
* According to the model, how surprising is a sequence of tokens?
* Inverse probability divided by number of words
* May not correlate with improvement in the task

1
N

perplexity(W) = P(wiwa...wn)

1
P(wiwy...wy)

N

Generratipefiex

* Sampling from a LM
* We generate sentences that have high probability according to the model

* We sample tokens according to their probability, given its previous n-1
words
* Ends when end of sentence token is sampled

polyphonic
p=.0000018
however)
the of a to in (p=.0003) _
0.06 0.03 |0.02 |0.02]|0.02 eoe | A|
= I | I | I see | (TT] | I
.06 .09 .11 .13.15 .66 .99

Neural Language Models

NeueltiEenguage Models

* Predict next word — now using Neural Networks instead of n-gram
probabilities

* Token are represented by embeddings
* This way we can predict unseen combinations of tokens

* First we represent words with One-hot vectors

(0000100 ... 000 0]
1234567 |V]

* Where V is the vocabulary, and this word is the 5" in the
vocabulary

Emiveddings

* Embedding matrix — features of each token of the vocabulary
* Each column is a token, in order
* Number of lines d is a hyperparameter
* Dense representation of words

\% | 1

d E X SZdH

EhlsEeleings = Word2Vec

* Distinguish between
WO rdS that are in the INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

context of another wit2)
words -

w(t-2)

w(t-1)

* Positive examples from L SUM
dataset Iy (W wo|

//
* Negative examples 7’ me

randomly sampled e

w(t+2)

* Logistic regression w2

e Static embeddings CBOW Skip-gram

SR E R lrRining data

...lLemon, a [tablespoon of apricot jam, a]

pinch...

. cl c2 [target] c3 c4
positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear)

apricot a apricot coaxial apricot if

EnloEeeeings = Relational Similarity

* king - man + woman = queen
* Paris — France + [taly = Rome
* https://code.google.com/archive/p/word2vec

tree
!

apple o—

ine
i Vi
grape

https://code.google.com/archive/p/word2vec/

NextweliehoiediEtien

* Use softmax to obtain probability of all words in the vocabulary,
given the input words

L]
.| and p(aardvark]...) *,
; .
! | thanks
— p(do...
for \ AL ,‘,\‘ 7 p() :
¢] — XN </ : :
: all 2 K N 1 * ‘
" W2 Pl NS /) p(fish|...) 4
' oo, S | -
' / N3 \ \;\ 2
. the) S 4B
. \ 3 — /& K1 — O\
: RN - 7 E \
R < = U \Q—'p(zebral...)
X x| 3dx1 dhX3d dhX 1 A% th y
[V[x3 IVIx1
input layer embedding hidden output layer
one-hot layer layer softmax

TralinineiEMis

* Self-supervision using a corpus of text
* We always know the next word in the training data
* Maximize the probability of that next word being the right one
 Same as minimizing negative log likelihood

* Backpropagate all the way to the embedding layer
* Randomly initialized

IFRRSerhners end Large Language Models

* |dea —instead of pre-training embedding layer, pre-train full NN for
contextual embeddings

 What architecture should this model have?
* Need to handle long distance relations
e But needs to be more efficient than recurrent networks

* Transformers’ main innovation — self attention layers

Seliiattemtieln

* At each layer, produce contextual representation of the words
* Therefore, we need to take into account the neighbors of each word

P

R :
Layer 6 2 235 o 9o S g8 g ©
- (4] © (@] — Q0 ; -— —

self-attention distribution

P
Layer 5 B 3 i 5
& S 0 s g 9
— w O = = Q2 =

SellEaiEnton mechanisn

Input

Embedding

Queries

Keys

Values

Thinking

k1

v

Machines

k2

vo[[7]]

Source: https://jalammar.github.io/illustrated-transformer/

wa

WK

SellEaiEnton mechanisn

Input

Embedding
Queries
Keys
Values

Score

X1

q1

k1

V1

Thinking

Q1‘k1=112

Machines
X2
qz
ke
V2
g1 * ko =96

Source: https://jalammar.github.io/illustrated-transformer/

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (d;)

Softmax

Softmax
X
Value

Sum

SellEaiEnton mechanisn

Thinking
x: [
a [T
« [
vi [T
qi e ki=112

14
0.88
vi [T

z

Machines

x> [
a. [T
ke [T
v. [

qi ko =96

12

0.12

z. [EIEE

SellEaiEnton mechanisn

* We can do this quickly with matrix multiplication

KT

X e “ softmax(

IMOCVERIERES

* Multi-head attention: multiple Q, Kand V matrices
* Each head can learn different relations between words

* Order is represented with positional embeddings
* Otherwise, the transformer model does not care about word order

* Explore attention: https://huggingface.co/spaces/exbert-
project/exbert

https://huggingface.co/spaces/exbert-project/exbert
https://huggingface.co/spaces/exbert-project/exbert

RN FaRSiormers

* Masked Language
Modeling:

* Randomly pick tokens to
replace with special [MASK] seimecow
token (or random word)

* Do this for 15% of the

tokens
* Predict original token Token +
Es’lcl):igg?:glls

* Next sentence prediction

 Predict if sentences are
related or not

CE Loss

thanks

the

Bidirectional Transformer Encoder

So
So

pl

long

[mask]

and

and

o pd p5
[mask] for all
thanks for all

H

apricot
the

pa
fish
fish

I

RlielpEnNg ane LLMs

* Many NLP tasks can be done with next word prediction

* E.g. “The sentiment of the sentence “| like Jackie Chan”is”
 Compare prob of positive and negative

* E.g. “Q: Who wrote the book “The Origin of Species"? A:”
* Look most likely next words
* Could be wrong!

* Current LLMs (like ChatGPT) have additional layers to improve
their answers

SURIREIRY

* Natural Language Processing
* N-gram models
* Neural linguistic models

* Further reading:
* Goodfellow, chapter 12.4
* “The spelled-out intro to language modeling: building makemore”
* https://www.youtube.com/watch?v=PaCmpygFfXo
 Speech and Language Processing Chapters 3, 7and 10
* https://jalammar.github.io/illustrated-transformer/

https://www.youtube.com/watch?v=PaCmpygFfXo
https://web.stanford.edu/~jurafsky/slp3/
https://jalammar.github.io/illustrated-transformer/

	Slide 1: 11 – Natural Language Processing
	Slide 2: Natural Language Processing
	Slide 3: Natural Language Processing
	Slide 4: Natural Language Processing
	Slide 5: NLP concepts
	Slide 6: N-gram models
	Slide 7: N-grams
	Slide 8: N-grams
	Slide 9: N-grams
	Slide 10: N-grams
	Slide 11: Bigram models
	Slide 12: Bi-gram models
	Slide 13: Example
	Slide 14: N-gram models
	Slide 15: Evaluating LMs
	Slide 16: Generating text
	Slide 17: Neural Language Models
	Slide 18: Neural Language Models
	Slide 19: Embeddings
	Slide 20: Embeddings – Word2Vec
	Slide 21: Skip-Gram Training data
	Slide 22: Embedddings – Relational Similarity
	Slide 23: Next word prediction
	Slide 24: Training LMs
	Slide 25: Transformers and Large Language Models
	Slide 26: Self-attention
	Slide 27: Self-attention mechanism
	Slide 28: Self-attention mechanism
	Slide 29: Self-attention mechanism
	Slide 30: Self-attention mechanism
	Slide 31: Improvements
	Slide 32: Training Transformers
	Slide 33: Prompting and LLMs
	Slide 34: Summary

