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Natural Language Processing



Natural Language Processing

• Use of human languages by a computer
• Different from computer languages – ambiguous, variability, 

inconsistency, tone, etc
• Applications in machine translation, chatbots, information 

retrieval
• Language models – probability distribution over sequences of 

words



Natural Language Processing

• Can use both symbolic and sub-symbolic AI
• Machine Learning can be used for NLP
• Challenges:

• Sequential data
• High dimensional data – many words

• One-hot encoding leads to very sparse data
• Most words are not used – vectors are mostly 0s



NLP concepts

• Tokens – smallest unit used in NLP
• Words, characters, or parts of words (subwords)

• Token -> Sentence -> Document –> Corpus
• Lemma/Stem – root of the word

• Remove suffixes and conjugation e.g. is->be, involves-> involve
• Part-of-speech: Class of the word

• E.g. noun, verb, adjective
• Tokenization – process of splitting text into token units
• Sentence splitting
• Stop words – very commonly used words

• The, that, is, a, …



N-gram models



N-grams

• Given h=“its water is so transparent that”
• How to calculate P(“the”|h)?
• Take a large corpus, count the number of times we see h and how often it 

is followed by “the”

• What if it is a new sentence?



N-grams

• N-gram – sequence of N tokens
• N-gram models: predict next token given a sequence of tokens
• N=1 -> Unigrams/Bag-of-words: each token has a fixed probability
• N=2 -> Bi-gram model

• Given one word, predict the next one
• We can count how many times each token occurs after another token

• N=3 -> Tri-gram model
• Given two consecutive words, predict the next one
• We can count how many times each token occurs after those two words



N-grams

Source: https://www.kdnuggets.com/2022/06/ngram-language-
modeling-natural-language-processing.html



N-grams

• How to calculate joint probability of a sequence of words?
• Use chain rule of probability

• We need the conditional probability of a token given its previous 
tokens

• We approximate by using only n-1 previous words instead of all 
previous words



Bigram models

• We approximate P(the | water is so transparent that) with 
P(the|that)

• We ca generalize to other n-grams (N is the n-gram size)



Bi-gram models

• Now we can compute the probability of a word sequence

• To get these probabilities we count and normalize so that the sum 
is 1

• We augment sentences with a special  start and end sentence 
symbols



Example



N-gram models

• Issues:
• Longer n-grams – bigger 

matrices
• Unseen n-grams: count is zero

• What if it appears on the test 
set?

• Model smoothing – add fake 
count

• Unknown words (out-of-
vocabulary – UNK token)

• Unidirectional, not very 
generalizable



Evaluating LMs

• Extrinsic evaluation – next lecture
• Intrinsic evaluation: Perplexity (PP or PPL)

• According to the model, how surprising is a sequence of tokens?
• Inverse probability divided by number of words
• May not correlate with improvement in the task



Generating text

• Sampling from a LM
• We generate sentences that have high probability according to the model
• We sample tokens according to their probability, given its previous n-1 

words
• Ends when end of sentence token is sampled



Neural Language Models



Neural Language Models

• Predict next word – now using Neural Networks instead of n-gram 
probabilities

• Token are represented by embeddings
• This way we can predict unseen combinations of tokens

• First we represent words with One-hot vectors

• Where V is the vocabulary, and this word is the 5th in the 
vocabulary



Embeddings

• Embedding matrix – features of each token of the vocabulary
• Each column is a token, in order
• Number of lines d is a hyperparameter
• Dense representation of words



Embeddings – Word2Vec

• Distinguish between 
words that are in the 
context of another 
words
• Positive examples from 

dataset
• Negative examples 

randomly sampled

• Logistic regression
• Static embeddings



Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  
pinch…

•                    c1                c2 [target]    c3      c4

21



Embedddings – Relational Similarity

• king − man + woman = queen
• Paris − France + Italy = Rome
• https://code.google.com/archive/p/word2vec

https://code.google.com/archive/p/word2vec/


Next word prediction

• Use softmax to obtain probability of all words in the vocabulary, 
given the input words



Training LMs

• Self-supervision using a corpus of text
• We always know the next word in the training data
• Maximize the probability of that next word being the right one
• Same as minimizing negative log likelihood

• Backpropagate all the way to the embedding layer
• Randomly initialized



Transformers and Large Language Models

• Idea – instead of pre-training embedding layer, pre-train full NN for 
contextual embeddings

• What architecture should this model have?
• Need to handle long distance relations
• But needs to be more efficient than recurrent networks

• Transformers’ main innovation – self attention layers



Self-attention

• At each layer, produce contextual representation of the words
• Therefore, we need to take into account the neighbors of each word



Self-attention mechanism

Source: https://jalammar.github.io/illustrated-transformer/



Self-attention mechanism

Source: https://jalammar.github.io/illustrated-transformer/



Self-attention mechanism



Self-attention mechanism

• We can do this quickly with matrix multiplication



Improvements

• Multi-head attention: multiple Q, K and V matrices
• Each head can learn different relations between words

• Order is represented with positional embeddings
• Otherwise, the transformer model does not care about word order

• Explore attention: https://huggingface.co/spaces/exbert-
project/exbert

https://huggingface.co/spaces/exbert-project/exbert
https://huggingface.co/spaces/exbert-project/exbert


Training Transformers

• Masked Language 
Modeling:
• Randomly pick tokens to 

replace with special [MASK] 
token (or random word)

• Do this for 15% of the 
tokens

• Predict original token

• Next sentence prediction
• Predict if sentences are 

related or not



Prompting and LLMs

• Many NLP tasks can be done with next word prediction
• E.g. “The sentiment of the sentence “I like Jackie Chan” is”

• Compare prob of positive and negative

• E.g. “Q: Who wrote the book ‘‘The Origin of Species"? A:”
• Look most likely next words
• Could be wrong! 

• Current LLMs (like ChatGPT) have additional layers to improve 
their answers



Summary

• Natural Language Processing
• N-gram models
• Neural linguistic models
• Further reading:

• Goodfellow, chapter 12.4
• “The spelled-out intro to language modeling: building makemore”
• https://www.youtube.com/watch?v=PaCmpygFfXo
• Speech and Language Processing Chapters 3, 7 and 10
• https://jalammar.github.io/illustrated-transformer/

https://www.youtube.com/watch?v=PaCmpygFfXo
https://web.stanford.edu/~jurafsky/slp3/
https://jalammar.github.io/illustrated-transformer/
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