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Natural Language Processing



NEeurEl Eanguage Processing

* Use of human languages by a computer

* Different from computer languages — ambiguous, variability,
Inconsistency, tone, etc

* Applications in machine translation, chatbots, information
retrieval

* Language models — probability distribution over sequences of
words




NeraltEenguase Processing

 Can use both symbolic and sub-symbolic Al
* Machine Learning can be used for NLP
* Challenges:

* Sequential data
* High dimensional data — many words

* One-hot encoding leads to very sparse data
* Most words are not used —vectors are mostly Os




NER comnecepits

* Tokens —smallest unit used in NLP
* Words, characters, or parts of words (subwords)

* Token -> Sentence -> Document —> Corpus

* Lemma/Stem -root of the word
* Remove suffixes and conjugation e.g. is->be, involves-> involve

* Part-of-speech: Class of the word
* E.g. noun, verb, adjective

* Tokenization — process of splitting text into token units
* Sentence splitting

* Stop words —very commonly used words
* The, that, is, a, ...




N-gram models




* Given h=%jts water is so transparentthat”
* How to calculate P(“the”|h)?

* Take a large corpus, count the number of times we see h and how often it
is followed by “the”

C'(its water is so transparent that the)

P(the|its water is so transparent that = _ ,
C'(its water is so transparent that)

 Whatifitis a new sentence?




* N-gram — sequence of N tokens
* N-gram models: predict next token given a sequence of tokens
* N=1 -> Unigrams/Bag-of-words: each token has a fixed probability

* N=2 -> Bi-gram model
* Given one word, predict the next one
* We can count how many times each token occurs after another token

* N=3 -> Tri-gram model
* Given two consecutive words, predict the next one
* We can count how many times each token occurs after those two words




s

N = 1 :|This|is|allsentence| unigrams: =

———__ sentence
— this is,

N = 2 :[Thislis|a|sentencel vigrams: isa
H‘Eentence
—

N = 3 :[This|is a|sentence|tigrams: M52
_-_-___--_-_-_-_-_'_‘—-———___

Source: https://www.kdnuggets.com/2022/06/ngram-language-
modeling-natural-language-processing.html




* How to calculate joint probability of a sequence of words?
* Use chain rule of probability

P(X1..X,) = P(X1)P(X2| X1)P(X5|X1:2) . P(X | X1:n—1)

= || P(Xk|X10-1)
k=1

* We need the conditional probability of a token given its previous
tokens

* We approximate by using only n-1 previous words instead of all
previous words




BigramineeEls

* We approximate P(the | water is so transparent that) with
P(the|that)

* We ca generalize to other n-grams (N is the n-gram size)

P(Wn‘wlzn—l) %P(Wnlwn—NJrl:n—l)




Bi=gramimeeeEls

* Now we can compute the probability of a word sequence
P(wi,) =~ HP(wk\wk_l)
k=1

* To get these probabilities we count and normalize so that the sum
IS 1

* We augment sentences with a special start and end sentence
symbols




Example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

P(I|<s>) = p(sani<s>) =[N 00 =
P(</s>|Sam) = P(Samlam)z- P(do|TI) -




N=giramimee/Els

* |ssues:
* Longer n-grams — bigger
matrices
* Unseen n-grams: count is zero

* What if itappears on the test
set?

* Model smoothing — add fake
count
* Unknown words (out-of-
vocabulary — UNK token)

* Unidirectional, not very
generalizable

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
‘tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.




EvaltlatinelEMIiS

e Extrinsic evaluation — next lecture

* Intrinsic evaluation: Perplexity (PP or PPL)
* According to the model, how surprising is a sequence of tokens?
* Inverse probability divided by number of words
* May not correlate with improvement in the task

1
N

perplexity(W) = P(wiwa...wn)

1
P(wiwy...wy)

N




Generratipefiex

* Sampling from a LM
* We generate sentences that have high probability according to the model

* We sample tokens according to their probability, given its previous n-1
words
* Ends when end of sentence token is sampled

polyphonic
p=.0000018
however )
the of a to in (p=.0003) _
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Neural Language Models



NeueltiEenguage Models

* Predict next word — now using Neural Networks instead of n-gram
probabilities

* Token are represented by embeddings
* This way we can predict unseen combinations of tokens

* First we represent words with One-hot vectors

(0000100 ... 000 0]
1234567 ... ... |V]

* Where V is the vocabulary, and this word is the 5" in the
vocabulary




Emiveddings

* Embedding matrix — features of each token of the vocabulary
* Each column is a token, in order
* Number of lines d is a hyperparameter
* Dense representation of words

\% | 1

d E X SZdH




EhlsEeleings = Word2Vec

* Distinguish between
WO rdS that are in the INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

context of another wit2)
words -

w(t-2)

w(t-1)

* Positive examples from L SUM
dataset Iy (W wo|

//
* Negative examples 7’ me

randomly sampled e

w(t+2)

* Logistic regression w2

e Static embeddings CBOW Skip-gram




SR E R lrRining data

...lLemon, a [tablespoon of apricot jam, a]

pinch...

. cl c2 [target] c3 c4
positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where  apricot dear )

apricot a apricot coaxial apricot if



EnloEeeeings = Relational Similarity

* king - man + woman = queen
* Paris — France + [taly = Rome
* https://code.google.com/archive/p/word2vec
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https://code.google.com/archive/p/word2vec/

NextweliehoiediEtien

* Use softmax to obtain probability of all words in the vocabulary,
given the input words
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TralinineiEMis

* Self-supervision using a corpus of text
* We always know the next word in the training data
* Maximize the probability of that next word being the right one
 Same as minimizing negative log likelihood

* Backpropagate all the way to the embedding layer
* Randomly initialized




IFRRSerhners end Large Language Models

* |dea —instead of pre-training embedding layer, pre-train full NN for
contextual embeddings

 What architecture should this model have?
* Need to handle long distance relations
e But needs to be more efficient than recurrent networks

* Transformers’ main innovation — self attention layers




Seliiattemtieln

* At each layer, produce contextual representation of the words
* Therefore, we need to take into account the neighbors of each word

P

R :
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SellEaiEnton mechanisn
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Source: https://jalammar.github.io/illustrated-transformer/

wa

WK




SellEaiEnton mechanisn

Input

Embedding
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Source: https://jalammar.github.io/illustrated-transformer/




Input

Embedding

Queries

Keys
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Divide by 8 ( d; )

Softmax

Softmax
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SellEaiEnton mechanisn

* We can do this quickly with matrix multiplication

KT

X e “ softmax(




IMOCVERIERES

* Multi-head attention: multiple Q, Kand V matrices
* Each head can learn different relations between words

* Order is represented with positional embeddings
* Otherwise, the transformer model does not care about word order

* Explore attention: https://huggingface.co/spaces/exbert-
project/exbert



https://huggingface.co/spaces/exbert-project/exbert
https://huggingface.co/spaces/exbert-project/exbert

RN FaRSiormers

* Masked Language
Modeling:

* Randomly pick tokens to
replace with special [MASK]  seimecow
token (or random word)

* Do this for 15% of the

tokens
* Predict original token Token +
Es’lcl):igg?:glls

* Next sentence prediction

 Predict if sentences are
related or not

CE Loss

thanks

the

Bidirectional Transformer Encoder
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RlielpEnNg ane LLMs

* Many NLP tasks can be done with next word prediction

* E.g. “The sentiment of the sentence “| like Jackie Chan”is”
 Compare prob of positive and negative

* E.g. “Q: Who wrote the book “The Origin of Species"? A:”
* Look most likely next words
* Could be wrong!

* Current LLMs (like ChatGPT) have additional layers to improve
their answers




SURIREIRY

* Natural Language Processing
* N-gram models
* Neural linguistic models

* Further reading:
* Goodfellow, chapter 12.4
* “The spelled-out intro to language modeling: building makemore”
* https://www.youtube.com/watch?v=PaCmpygFfXo
 Speech and Language Processing Chapters 3, 7and 10
* https://jalammar.github.io/illustrated-transformer/



https://www.youtube.com/watch?v=PaCmpygFfXo
https://web.stanford.edu/~jurafsky/slp3/
https://jalammar.github.io/illustrated-transformer/
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