11 – Natural Language Processing

André Lamúrias

Natural Language Processing

Natural Language Processing

- Use of human languages by a computer
- Different from computer languages ambiguous, variability, inconsistency, tone, etc
- Applications in machine translation, chatbots, information retrieval
- Language models probability distribution over sequences of words

Natural Language Processing

- Can use both symbolic and sub-symbolic AI
- Machine Learning can be used for NLP
- Challenges:
 - Sequential data
 - High dimensional data many words
- One-hot encoding leads to very sparse data
 - Most words are not used vectors are mostly 0s

NLP concepts

- Tokens smallest unit used in NLP
 - Words, characters, or parts of words (subwords)
- Token -> Sentence -> Document -> Corpus
- Lemma/Stem root of the word
 - Remove suffixes and conjugation e.g. is->be, involves-> involve
- Part-of-speech: Class of the word
 - E.g. noun, verb, adjective
- Tokenization process of splitting text into token units
- Sentence splitting
- Stop words very commonly used words
 - The, that, is, a, ...

N-gram models

- Given h="its water is so transparent that"
 - How to calculate P("the"|h)?
 - Take a large corpus, count the number of times we see h and how often it is followed by "the"

 $P(\text{the}|\text{its water is so transparent that} = \frac{C(\text{its water is so transparent that the})}{C(\text{its water is so transparent that})}$

• What if it is a new sentence?

- N-gram sequence of N tokens
- N-gram models: predict next token given a sequence of tokens
- N=1 -> Unigrams/Bag-of-words: each token has a fixed probability
- N=2 -> Bi-gram model
 - Given one word, predict the next one
 - We can count how many times each token occurs after another token
- N=3 -> Tri-gram model
 - Given two consecutive words, predict the next one
 - We can count how many times each token occurs after those two words

Source: https://www.kdnuggets.com/2022/06/ngram-language-modeling-natural-language-processing.html

- How to calculate joint probability of a sequence of words?
 - Use chain rule of probability

$$P(X_1...X_n) = P(X_1)P(X_2|X_1)P(X_3|X_{1:2})...P(X_n|X_{1:n-1})$$
$$= \prod_{k=1}^n P(X_k|X_{1:k-1})$$

- We need the conditional probability of a token given its previous tokens
- We approximate by using only n-1 previous words instead of all previous words

Bigram models

• We approximate P(the | water is so transparent that) with P(the|that)

$$P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-1})$$

• We ca generalize to other n-grams (N is the n-gram size)

$$P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-N+1:n-1})$$

Bi-gram models

• Now we can compute the probability of a word sequence

$$P(w_{1:n}) \approx \prod_{k=1}^{n} P(w_k | w_{k-1})$$

- To get these probabilities we count and normalize so that the sum is 1
- We augment sentences with a special start and end sentence symbols

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P(I | < s >) =$$
 $P(Sam | < s >) =$ $P(am | I) =$ $P($P($P($P(s > | Sam) =$ $P(Sam | am) =$ $P(do | I) =$$$$

N-gram models

Issues:

- Longer n-grams bigger matrices
- Unseen n-grams: count is zero
 - What if it appears on the test set?
 - Model smoothing add fake count
- Unknown words (out-ofvocabulary – UNK token)
- Unidirectional, not very generalizable

1 gram	 -To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have -Hill he late speaks; or! a more to leg less first you enter 					
2 gram	-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.-What means, sir. I confess she? then all sorts, he is trim, captain.					
3 gram	-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.-This shall forbid it should be branded, if renown made it empty.					
4 gram	 -King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; -It cannot be but so. 					

Evaluating LMs

- Extrinsic evaluation next lecture
- Intrinsic evaluation: Perplexity (PP or PPL)
 - According to the model, how surprising is a sequence of tokens?
 - Inverse probability divided by number of words
 - May not correlate with improvement in the task

perplexity(W) =
$$P(w_1w_2...w_N)^{-\frac{1}{N}}$$

= $\sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$

Generating text

- Sampling from a LM
 - We generate sentences that have high probability according to the model
 - We sample tokens according to their probability, given its previous n-1 words
 - Ends when end of sentence token is sampled

Neural Language Models

Neural Language Models

- Predict next word now using Neural Networks instead of n-gram probabilities
- Token are represented by embeddings
 - This way we can predict unseen combinations of tokens
- First we represent words with One-hot vectors

[0 0 0 0 1 0 0 ... 0 0 0 0] 1 2 3 4 5 6 7 ... |V|

• Where V is the vocabulary, and this word is the 5th in the vocabulary

- Embedding matrix features of each token of the vocabulary
 - Each column is a token, in order
 - Number of lines d is a hyperparameter
 - Dense representation of words

Embeddings – Word2Vec

- Distinguish between words that are in the context of another words
 - Positive examples from dataset
 - Negative examples randomly sampled
- Logistic regression
- Static embeddings

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch... c1 c2 [target] c3 c4

positive	e examples +	negative examples -			
t	C	t	С	t	С
apricot	tablespoon	apricot	aardvark	apricot	seven
apricot	of	apricot	my	apricot	forever
apricot	jam	apricot	where	apricot	dear
apricot	a	apricot	coaxial	apricot	if

Embedddings – Relational Similarity

- king man + woman = queen
- Paris France + Italy = Rome
- <u>https://code.google.com/archive/p/word2vec</u>

Next word prediction

• Use softmax to obtain probability of all words in the vocabulary, given the input words

- Self-supervision using a corpus of text
 - We always know the next word in the training data
 - Maximize the probability of that next word being the right one
 - Same as minimizing negative log likelihood
- Backpropagate all the way to the embedding layer
 - Randomly initialized

Transformers and Large Language Models

- Idea instead of pre-training embedding layer, pre-train full NN for contextual embeddings
- What architecture should this model have?
 - Need to handle long distance relations
 - But needs to be more efficient than recurrent networks
- Transformers' main innovation self attention layers

Self-attention

- At each layer, produce contextual representation of the words
 - Therefore, we need to take into account the neighbors of each word

Source: https://jalammar.github.io/illustrated-transformer/

Source: https://jalammar.github.io/illustrated-transformer/

• We can do this quickly with matrix multiplication

Improvements

- Multi-head attention: multiple Q, K and V matrices
 - Each head can learn different relations between words
- Order is represented with positional embeddings
 - Otherwise, the transformer model does not care about word order
- Explore attention: <u>https://huggingface.co/spaces/exbert-</u> project/exbert

Training Transformers

- Masked Language Modeling:
 - Randomly pick tokens to replace with special [MASK] token (or random word)
 - Do this for 15% of the tokens
 - Predict original token
- Next sentence prediction
 - Predict if sentences are related or not

Prompting and LLMs

- Many NLP tasks can be done with next word prediction
- E.g. "The sentiment of the sentence "I like Jackie Chan" is"
 - Compare prob of positive and negative
- E.g. "Q: Who wrote the book "The Origin of Species"? A:"
 - Look most likely next words
 - Could be wrong!
- Current LLMs (like ChatGPT) have additional layers to improve their answers

- Natural Language Processing
- N-gram models
- Neural linguistic models
- Further reading:
 - Goodfellow, chapter 12.4
 - "The spelled-out intro to language modeling: building makemore"
 - https://www.youtube.com/watch?v=PaCmpygFfXo
 - Speech and Language Processing Chapters 3, 7 and 10
 - https://jalammar.github.io/illustrated-transformer/